
Journal of Manufacturing Systems 35 (2015) 1–9

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

j ourna l h omepage: www.elsev ier .com/ locate / jmansys

Handling ties in heuristics for the permutation flow shop scheduling
problem

Dragan Vasiljevic, Milos Danilovic ∗

Department of Operations Management, Faculty of Organizational Sciences, University of Belgrade, Serbia

a r t i c l e i n f o

Article history:
Received 3 July 2012
Received in revised form 26 August 2014
Accepted 21 November 2014
Available online 19 December 2014

Keywords:
Scheduling
Constructive heuristic
Permutation flow shop
Makespan
NEH heuristic

a b s t r a c t

The NEH heuristic, as the most efficient procedure for the flow shop scheduling problem is based on con-
structing a sequence of jobs by iteratively inserting the non-scheduled jobs into a current subsequence.
The initial phase of NEH, in which an initial order (priority order) of jobs is defined, and the insertion
procedure, usually cause a high number of ties. Unlike the sort of ties in the insertion phase, the ties in
the initial phase are not uniquely defined by the definition of NEH. This results in an inaccuracy in most of
the large number of published experimental results on this topic. The experimental research, presented
in this paper confirms the importance of the inclusion of the information about the sort of ties in the
initial phase in any experimental result related to NEH. The conclusion, obtained by this study, is that
the range of the objective values for different sorts of ties is often greater than the improvements, pub-
lished in literature. This allowed us to construct a very simple algorithm that outperforms published NEH
improvements, maintaining NEH’s exceptional efficiency. The proposed algorithm also uses the informa-
tion about the ties in the insertion phase to improve the objective value. The permutation flow shop
problem primarily concerns the makespan objective, but the main conclusions can be applied to other
flow shop problems as well.

© 2014 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The permutation flow shop problem (PFSP) with the makespan
objective is one of the most thoroughly studied production sched-
uling problems (reviews in [1–5]). The PFSP determines the order
of processing jobs, from the set J = {1, 2, ..., n} of n independent jobs,
over a set of m machines to optimize a given criterion, when all of
the jobs have the same machine sequence. The processing sequence
on the first machine is maintained throughout the remaining
machines. The criteria most commonly studied in literature is the
minimization of the total completion time, makespan (Cmax), and
the corresponding problem is denoted as F|prmu|Cmax, [6]. In the
PFSP, solutions are represented by the permutation of n jobs, so
there are n! possible sequences and the problem is proved to be
NP-complete if m is higher than two [7].

The PFSP was first studied by Johnson in 1954 [8] and since then,
an overwhelming number of papers propose different procedures
trying to determine better job sequences. The efforts have been
devoted to finding high-quality solutions in a reasonable computa-
tional time. A breakthrough in these efforts was obtained with the

∗ Corresponding author. Tel.: +381 69 889 3236; fax: +381 11 3283 647.
E-mail address: danilovicm@fon.rs (M. Danilovic).

NEH heuristics [9], which is commonly regarded as the best heuris-
tic for solving F|prmu|Cmax (see in this regard [10–12,36]). NEH
heuristic provides the initial sequence for all best metaheuristics
(Agarval et al. [13]; Ekskioglu et al. [14]; Grabowski and Wodecki
[15]; Haq et al. [16]; Jarboui et al. [17]; Kalczynski and Kamburowski
[18]; Laha and Mandal [19]; Liao et al. [20]; Liu et al. [21]; Now-
icki and Smutnicki [22]; Onwubolu and Davendra [23]; Pan et al.
[24]; Ruiz and Stutzle [25]; Tasgetiren et al. [26], Ribas et al. [12],
Fernandez-Viagas and Framinan [11], Dong et al. [27,28]).

NEH heuristic consists of two simple phases. First, NEH finds the
priority order by sorting the jobs according to their non-increasing
total processing times. Later, the first unscheduled job in this order
is inserted in the best position among all possible positions of the
current subsequence of already scheduled jobs. Makespan objec-
tive for the PFSP is particularly interesting for the researchers
because Taillard [30] proposed an acceleration that enables that
the complexity of the insertion phase is reduced from O(n2m) to
O(nm). In that way, the overall complexity of the NEH is reduced to
O(n2m).

Usually, through the execution of NEH, ties can occur: in the
priority order – jobs with the same total processing times in the
initial ordering sequence; whereas in the insertion phase ties occur
in different subsequences with the same best partial makespan. In
known literature, much more attention is focused on the second

http://dx.doi.org/10.1016/j.jmsy.2014.11.011
0278-6125/© 2014 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jmsy.2014.11.011
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2014.11.011&domain=pdf
mailto:danilovicm@fon.rs
dx.doi.org/10.1016/j.jmsy.2014.11.011

2 D. Vasiljevic, M. Danilovic / Journal of Manufacturing Systems 35 (2015) 1–9

type of ties, proposing insertion tie-breaking rules. The NEH job
priority order, �p, was shown by Framinan et al. [31] to be superior
to 177 different examined orders. Following this analysis, a large
number of papers were published suggesting a new priority order
and introducing tie-breaking rules in the insertion phase. In their
well-known paper, Kalczynski and Kamburowski [18] suggested a
better priority order combined with a simple tie-breaking in the
insertion phase, securing optimality in the two-machine case and
improving the general performance. Dong et al. ([27] for makespan
and [28] for flowtime) proposed a starting order based on the mean
and the variance of the processing times of the jobs, combined
with a specific mechanism for tie-breaking in the insertion phase.
According to [29], the tie-breaking mechanism proposed in this
paper presents the best results that are tested on Taillard test bed.
Fernandez-Viagas and Framinan [11] present a new tie-breaking
mechanism based on an estimation of the idle times of the different
subsequences.

All published work regarding NEH can be summed up or divided
into two categories: the first attempts to improve the value of the
attained makespan while keeping the high efficiency of the original
procedure; whereas the second category proposes metaheuristic
improvements which would advance the initial schedule, obtained
through the NEH method, improving makespan without taking up
too much additional CPU time. The only way of comparing the sug-
gested improvements is by way of experimental cross-referencing
using known benchmark instances. In the case of PFSP, in almost all
cases, results are tested on the Taillard [32] benchmark set of 120
instances, rarely on the Watson et al. [33] benchmark suite consist-
ing of 14,000 random-type and structured-type instances based on
features found in some real-world scheduling problems.

The focus of our work is exploring the possibilities of improving
makespan values by implementing simple changes to the NEH pro-
cedure. Before attempting any analysis on the subject, the four main
advantages of using the NEH need to be emphasized, which classify
it as the most effective heuristic, unmatched in the contemporary
field of study:

1. NEH formulation is fundamentally simple, which is a significant
advantage for objective experimental testing;

2. Exceptional efficiency; on computers of average capacity, NEH
needs, for the largest Taillard instances, only twelve hundredths
of a second. Studies have shown that in reality PFSP is a dynamic
rather than a static problem, which indicates that the program
execution time is a significant parameter;

3. CPU time spent on NEH is directly related to n and m only; it does
not depend on the distribution of the job durations on machines.
This allows the CPU time spent by NEH to be taken as the basis
for comparison to other algorithms;

4. In this exceptionally short time interval, NEH determines the
job schedule with the makespan value below 6% over the opti-
mal values on Taillard instances, while on the Watson instances
the deviations are even lower. It should be mentioned that for
the largest Taillard instances the deviations are less than 3%.
Therefore, all published work on this subject tries to make a 3%
makespan improvement, thus compromising the three prior key
advantages of the NEH procedure.

The above mentioned advantages of NEH impose strict crite-
ria which need to be met by the NEH improvements. Seeing as
how most improvements are related to an attempt to improve the
makespan values, it is important that the authors explain their posi-
tion regarding the compromising effect this has on the first three
advantages of the NEH procedure. The particularity of this prob-
lem is that the range of possible makespan improvements is very
limited (on average less than 3%), thus, a very precise and objec-
tive evaluation is considered a precondition. Unfortunately, almost

all published work on the subject contains a certain imprecise and
subjective element:

- Ununified coding of NEH procedure: in different articles, reported
CPU time spent by the NEH procedure can differ by two orders
of magnitude on similar hardware equipment. For example, the
average CPU time in [34] on 500 × 20 Taillard test instances
is 13.21 s, while the time using the same hardware for a code
implemented in this study is twelve hundredths of a second. The
exceptional difference in values is a consequence of inadequate
coding of Taillard acceleration, which, as a consequence, has a
repetition of bad coding in every cycle. To make matters worse,
the time intervals arrived at by using this faulty process are used
to make conclusions, and in the same study [34] the time of 13.21 s
is taken as confirmation for their overall acceleration of the pro-
cess. As a contribution for solving this type of incoherency, our
study gives a detailed NEH algorithm with Taillard acceleration
which is very simple and that, as far as our research indicates,
yields results, in significantly shorter time than other known and
published results;

- Imprecise definition of the NEH procedure itself: the NEH prior-
ity order, �p, implies a non-increasing sequence for the total
processing times. In the case of ties, �p depends on the imple-
mented sorting method. Different �p usually result in different
makespan values, obtained through the NEH procedure. Consid-
ering that a makespan value thus acquired is relevant for
comparison to NEH, imprecision and partiality is obvious. It
should be said that some newer studies tacitly adopted �p in
which the ties are mutually ordered in an increasing sequence
of job labels. This however, does nothing to further objectiv-
ity because reference values thus acquired can be compared to
improvements that implement a different sort procedure. This
is why it is necessary, when presenting experimental findings,
to clearly state the type of sorting and to compare the results to
relevant values obtained with the same sorting procedure. This
study shows that the deviations of makespan values obtained in
the NEH procedure for different ties sequences in �p are in the
range of the best published NEH improvements;

- Different reference values for the same benchmark instances: for
Taillard instances the best obtained results are updated on public
sites. Various authors use different referent values information
that can be either outdated or inaccurate.

Consequently, the reader is confounded upon finding, in the
most prominent works of this field, different reference values used
for further comparison. As an example, Table 1 gives us the average
reference values used in the three previously referenced studies.
The performance measure is the relative percentage increase as
follows:

�[�] = Cmax[�] − Cmax[�∗]
Cmax[�∗]

× 100%, (1)

where �* are optimal or the best known sequences, and � are the
sequences found by NEH. It should be stated that the average values
shown here are for grouped test instances, the differences during
individual testing of instances are even greater. The solutions are:
Fernandez-Viagas and Framinan [11], denoted as FF, Dong et al.
[27], denoted as D and Ruiz and Stutzle [25], denoted as RS.

The experimental results of analyzing the influence of sorting
�p, conducted in this study, as well as the exceptional efficiency
of the well-programmed NEH procedure enable a very simple
improvement of the NEH procedure which outperforms known
improvements, yet do not compromise any of the three above
mentioned advantages of the original NEH. This improvement also
includes another type of ties, ties in the insertion phase, but unlike
other known studies, without the use of tie-breaking rules.

Download English Version:

https://daneshyari.com/en/article/1697487

Download Persian Version:

https://daneshyari.com/article/1697487

Daneshyari.com

https://daneshyari.com/en/article/1697487
https://daneshyari.com/article/1697487
https://daneshyari.com

