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a  b  s  t  r  a  c  t

Although  hybrid  Petri  net (HPN)  is a popular  formalism  in modelling  hybrid  production  systems,  the
HPN  model  of  large  scale  systems  gets substantially  complicated  for analysis  and  control  due  to large
dimensionality  of  such  systems.  To  overcome  this  problem,  a typical  approach  is  to decompose  the  net
into  subnets  and  then  control  the  plant  through  hierarchical  or decentralized  structures.  Although  this
concept  has  been  widely  discussed  in  the literature  for  discrete  PNs,  there  is  a lack  of  research  for  HPNs.  In
this paper,  a new  method  of decomposition  of  first-order  hybrid  Petri  nets  (FOHPNs)  is  proposed  first  and
then  the  hierarchical  control  of the  subnets  through  a  coordinator  is  introduced.  The advantage  of  using
the  proposed  approach  is validated  by an  existing  example.  A sugar  milling  case  study  is analysed  by
using  a decomposed  FOHPN  model  and  the  optimization  results  are  compared  against  the  results  of  the
approaches  presented  in other  papers.  Simulation  results  show  not  only  an  improvement  in production
rate,  but  also  show  the  ability  to control  the  plant  online.  In addition,  by  using  the hierarchical  control
structure  for  an  FOHPN  model,  it is possible  to reduce  the  cost  of  communication  links,  improve  the
reliability  of the system,  maintain  the  plant  locally,  and  partially  redesign  the  system.
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1. Introduction

When designing a new system, one is forced to derive a math-
ematical model for better understanding of the behaviour of the
system. For a long period of time, the processes with discrete vari-
ables and those with continuous variables have been modeled and
analyzed using two completely different tools. Continuous systems
are often described by differential and difference equations, trans-
fer functions, etc., while in the discrete counterpart, state transition
graphs, Petri Nets, etc., are employed.

In the last two decades, there were great interests in the pro-
cesses that include both discrete and continuous parts. Hybrid
systems are defined as dynamic systems that include continuous
states, discrete–states and event variables [1]. In other words, as the
plant has time-driven and event-driven dynamics, the controller
manages both time-driven and event-driven parts. Modelling, anal-
ysis, and control of hybrid dynamical systems have been attracted
great attention and a number of researches have been devoted
to these topics [2]. Hybrid systems arise in many different fields,
including robotics, automation, aerospace, embedded systems,
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biological and chemical systems, transportation, process control,
mixed-signal (analogue-digital) integrated circuits, power systems,
oil operation and transportation, etc. [3–6].

A large number of approaches have been proposed to model a
hybrid system [7]. Among these, hybrid Petri nets (HPNs) are very
popular models [2]. These models extend ordinary Petri nets to
include continuous places and transitions in order to capture the
continuous dynamics of the system [2]. Since HPN is an extension
of ordinary PN, it maintains PN properties such as concurrency,
synchronization, mutual exclusion, and conflict resolution from
ordinary PNs [8].

The hybrid Petri net model considered in this paper is referred
to as first-order hybrid Petri net (FOHPN), since its continuous
dynamics are modelled by first order differential equations [9].
Considering the fact that any n th order differential equation sys-
tem can be transformed into n first-order differential equations
with proper choice of states, one can conclude that FOHPN is gen-
eral enough to model systems with practical interests. The overall
hybrid net behaviour, which is a combination of both event driven
and time driven dynamics, can be represented by a linear dis-
crete time, time varying state variable model [10]. By this algebraic
formalism, a manufacturing system could be described by a lin-
ear state variable model to which classical control theory may  be
applied.
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An FOHPN consists of continuous places holding fluid, discrete
places containing a non-negative integer number of tokens, and
discrete or continuous transitions. Delay times associated with dis-
crete transitions can be either zero, deterministic, or stochastic.
Firing of each continuous transition occurs with a constant speed
in an interval of time and can only be changed with occurrence of an
event. FOHPNs have been used in many application domains such
as manufacturing systems [10,11], supply chain management [12],
urban traffic [13], and fault monitoring [14].

The hybrid Petri net model of large scale systems can become
very colossal. For instance, using HPNs, an intersection with a traf-
fic light is represented by 134 places and 99 transitions in [13]. It
is therefore apparent that if one tries to model all intersections of
an urban traffic network with HPN, the net will become extremely
large. Analysis of these large nets is complex and time consuming.
To overcome this complexity, one could decompose the net into
several subnets and then try to control the whole net by control-
ling and coordinating subnets. This solution results in a hierarchical
or decentralized control structure that is discussed for discrete Petri
nets [15]. For example, Nishi has proposed a Lagrangian relaxation
method for decomposition of Petri nets in order to solve optimiza-
tion of route planning problems for automated guided vehicles [16],
and Iordache has proposed methods of decentralized supervision
of Petri nets based on place invariant concept [17].

Although there are many articles regarding decomposition of
discrete PNs, there is a lack of research in decomposition tech-
niques for hybrid Petri nets. In [18], an object-oriented formalism
is introduced to Petri nets associated with differential equation
systems to structure the system decomposition and handle its com-
plexity. This formalism is used for modelling of hybrid production
systems; however no analysis is done using this model. In this
paper, a decomposition algorithm is proposed for FOHPN which
results in hierarchical control of the plant and an algorithm is pro-
posed to calculate optimal firing speed of continuous transitions in
the decomposed net.

A brief description of FOHPN is given in the next section. Sec-
tion 3 is devoted to hierarchical control of systems using FOHPN
modelling, and an algorithm for decomposition of FOHPN is pro-
posed. Using the proposed algorithm, a sugar milling case study is
analysed in Section 4 as an example of a mixed batch/continuous
plant. The conclusion and possible future works are presented in
Section 5.

2. First order hybrid Petri nets

A FOHPN is a structure N = <P, T, Pre, Post, D, C> [9]. P is the set of
places that is partitioned into a set of discrete places Pd and a set of
continuous places Pc. The set T = Td∪Tc is a finite set of transitions
where Td and Tc are finite sets of discrete and continuous transi-
tions, respectively. Discrete transitions are further partitioned into
a set of immediate, deterministic timed, and stochastic timed tran-
sitions. The function D : Td → R

+ specifies the timing of discrete
transitions where R

+ represents positive real numbers. The func-
tion C : Tc → R

+
0 × R

+∞ defines the firing speed of each continuous
transition where R

+
a represents R

+ ∪ {a}. For any continuous tran-
sition, we define C(ti) = (V ′

i
, Vi), where V ′

i
represents the minimum

firing speed (mfs) and Vi represents the maximum firing speed
(MFS) of transition ti.

A state of FOHPN is represented by a marking of its places. A
marking (m) is a function that assigns a non-negative integer num-
ber of tokens to each discrete place and a fluid volume to each
continuous place. The marking of a place is influenced by firing of
the transitions connected to that place. A transition could be fired
if it is enabled. A discrete transition is enabled when the marking
of each of its input places is greater than or equal to the weight of

the corresponding arc connecting the place and the transition. On
the other hand, if the marking of all discrete input places is greater
than or equal to the weight of the corresponding connecting arcs,
the continuous transition is considered as enabled.

Firing of a continuous transition is equivalent to flow of tokens
through the transition with a predetermined speed. The instanta-
neous firing speed (IFS) at time � of a continuous transition (tj ∈ Tc)
is denoted by vj(�). If it is assumed that no discrete transition is fired
at time � and all speeds are continuous in �, the marking evolution
of a continuous place in time can be written as

dm

dt
(�) =

∑
tj∈Tc

C
(

pi, tj

)
vj (�) (1)

where C is the incidence matrix of the net and is represented as
follows

C (p, t) =
[

Ccc

Cdc

Ccd

Cdd

]
(2)

A macro event occurs when (a) a continuous place becomes
empty, or (b) a discrete transition fires, or (c) a continuous place,
whose marking is increasing (decreasing), reaches a flow level that
enables (disables) a set of discrete transitions. Since the first-order
behaviour is considered in this paper, the IFS will be constant dur-
ing the interval [�k,�k+1] where �k and �k+1 are assumed to be the
occurrence times of two sequential macro-events. The continuous
behaviour of the net in this time interval is described as:

mc (�) = mc (�k) + Cccv (�k) (� − �k)

md (�) = md (�k)
(3)

When a macro event occurs, it is possible to have a jump in the
marking of discrete and continuous places. Let �(�) be the firing
count vector associated to the firing time �(k), then an equation for
the occurrence of a macro event can be written as follows:

mc (�) = mc (�−) + Ccd� (�)

md (�) = md (�−) + Cdd� (�)
(4)

Linear inequalities will be used to characterize the set of all
admissible firing speed vectors. Each IFS vector in this set repre-
sents one operational mode of the system. The operator should
choose the best IFS vector for the system in order to satisfy a given
objective function with constraints. To compute an optimal IFS
vector, an objective function must be introduced. Some possible
objective functions are maximizing flows, maximizing outflows,
minimizing stored flows, and minimizing the transient time. In this
paper, the algorithm presented by [9] is used to compute the set of
all admissible IFS vectors and select the best IFS vector for the given
objective function.

3. Hierarchical control of FOHPN

3.1. Hierarchical control of large scale systems

The concept of large-scale systems can be described as com-
plex systems composed of a number of smaller subsystems with
particular functions and shared resources that are governed by
interrelated goals and constraints [19]. In such systems, the typ-
ical centralized controllers may  fail due to lack of a centralized
information-gathering system or of centralized computing capabil-
ities. Due to geographical distribution of components in large scale
systems, the costs and the reliability of communication links cannot
be neglected. On the other hand, advancement in microproces-
sors provides a new solution for distributed computation. Different
portions of computation necessary to control the whole system is
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