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a  b  s  t  r  a  c  t

We  formulate  a  continuous-time  Markov  chain  model  of  a  transfer  line  in  which  there  are  two  unreli-
able  machines  separated  by  a finite  buffer.  Due  to  limited  repair  resources,  simultaneous  repairs  are  not
possible  in  cases  where  both  machines  fail,  and  therefore  we  develop  a  repair  priority  rule  that  depends
on  the  number  of  work-pieces  present  in  the  buffer.  Each  machine  is  characterized  by  three  exponen-
tially  distributed  random  variables:  processing  time,  time  to failure,  and  time  to  repair.  We  provide  a
stochastic  model  for finding  an  optimal  repair  priority  rule  and  an  efficient  algorithm  accompanied  by
easy-to-use  Matlab  software.  An  extensive  numerical  study  is performed  to  test  the  sensitivity  of the
proposed  dynamic  repair  priority  rule.  While  in  previous  studies  repair  priority  was  given  to the  bottle-
neck  machine,  we  show  that  there  are  situations  in  which  priority  should  be  given  to  the  non-bottleneck
machine.  Finally,  we  identify  conditions  in  which  adding  a  second  technician  is  economically  advisable.

© 2013 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Machines in production systems are often unreliable. Failures
can occur in a production line at any given time, disturbing the
flow of material through the line and reducing the line production
rate. To repair a machine, i.e., restore it to an operational state, it
is necessary to allocate resources. Such resources include qualified
technicians, of whom there may  be a limited number, owing to
economic considerations or a shortage of available qualified pro-
fessionals. To maintain a production line’s overall performance in
cases of failure, it is necessary to define a repair priority rule that
determines how limited repair resources are allocated. Appropriate
prioritization of repairs can reduce machines’ non-productive time
(down time or idle state), as well as reduce the effective recovery
time (the time period from machine failure until the machine starts
processing work-pieces again).

This paper studies the effect of repair priority on the produc-
tion rate of a line consisting of two machines separated by a finite
buffer. In the model proposed herein, work-pieces enter the first
machine, M1, and an operation takes place. Once processed by
M1, these pieces move on to the buffer, where they stay until
taken to the second machine, M2, for further processing. When
processing by M2 is complete, the work-pieces leave the system
(see Fig. 1).
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Processing, failure, and repair times for each machine are
assumed to be exponential random variables. The buffer capacity
is finite, and there is only one technician available to repair both
machines. The latter assumption implies that only one machine
can be repaired at a time and that when both machines are down, a
repair priority has to be established. In this study the priority rule
is dependent on a single decision variable—the number of work-
pieces in the buffer—while the objective is to maximize the system’s
production rate.

To obtain an optimal solution, we use a continuous-time
discrete-state Markov chain and construct an algorithm that com-
putes the probabilities of various states and the optimal repair
priority rule. In addition, we perform a numerical study and sen-
sitivity analysis to examine the influence of the repair priority
rule on system performance under various conditions. These anal-
yses show how the proposed dynamic policy outperforms simpler
static policies that are not influenced by the state of the sys-
tem.

Although transfer line modeling has been reviewed extensively
[1–4], the literature on the subject of repair priority under resource-
constrained conditions is quite limited. The latter can be divided
into two  streams. The first stream deals with static repair prior-
ity, in which the repair priority rule is fixed and is independent of
the state of the manufacturing line in the event of failure. Bryant
and Murphy [5] developed a model with a static repair priority
rule, where the repair priority is given to the slowest machine in
the line, independent of the state of the system. Yeralan and Muth
[6] compared between two scenarios in which either the first or
the second machine has repair priority. If two or more machines
fail simultaneously, a predetermined and unchanging repair policy
dictates which machine is the first to be repaired. Dogan-Sahiner
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Fig. 1. Two-machine transfer line.

and Altiok [7] allowed simultaneous repairs, taking into account
the sum of all individual repair rates at any given time as a con-
straint.

Dudick [8] was the first to model ‘dynamic’ repair priority, in
which the repair priority rule is based on the state of the sys-
tem. In Dudick’s model, when two machines in a line are down
simultaneously, the repair priority is determined according to the
number of pieces in the buffer. Dudick assumes a discrete produc-
tion line comprising two machines, in which the processing time
for each machine is fixed and equal to one unit of time. The fail-
ure times in his model are geometrically distributed, and repair
times are either constant or geometrically distributed. Buzacott [9]
considers similar assumptions, but his model, unlike Dudick’s, dic-
tates that if a machine breaks after the repair of another machine
has already begun, the original repair must be completed with-
out interruption. Rho [10] developed a dynamic repair priority
rule for a transfer line with identical machines; each machine is
served by a robot that feeds pieces into the machine and removes
pieces from it. Yeralan and Dieck [11] developed a dynamic repair
priority system in which the repair rates change as a function of
the number of pieces in the buffer. Their model assumes that the
technician will work at a faster rate if necessary. While the above
papers each considered a discrete production system comprising
two machines with identical processing times, in the current paper
we develop a dynamic repair priority rule for a continuous produc-
tion system in which each machine is different and characterized by
three exponential random variables: processing, repair and failure
times.

Models of long transfer lines, consisting of more than two
machines, require solutions of much greater complexity owing to
the large state space, and they are generally investigated using
either simulation-based or analytical methods. Smith [12] and Um
et al. [13] provide detailed surveys on the use of simulation for
the design and operation of manufacturing systems. Yang et al.
[14] propose an original analytic method, a new parameter cou-
pling method, and compare their analytical results to the results of
a simulation experiment. The latter study focuses on the context
of a closed-loop manufacturing system (CLMS). A two-node CLMS
is described in our paper in Section 4. Simulation-based studies of
long transfer lines that consider resource constraints (a single tech-
nician) include those of Smith [15], Kouikoglou and Phillis [16], and
Chakravarthy and Agarwal [17]. Studies involving analytic meth-
ods include those of Gershwin [18], Alvarez-Vargas et al. [19], Tan
and Karabati [20], Kouikoglou [21], Kim and Gershwin [22], Kuhn
[23] and Xia et al. [24]. Among these, Kuhn [23] is the only study
to consider repair resource constraints. Kuhn [23] determined the
production rate of the transfer line by using two coupled queuing
systems. Kuhn’s model assumes that when multiple machines are
awaiting repair, they are serviced in first-come-first-serve order. In
this paper, we identify an optimal dynamic repair priority rule that
depends on the number of items in the buffer, and assume that the
technician immediately services the highest priority machine, even
if it breaks down while he is repairing a lower-priority machine.

The main contributions of our paper are a Markov chain model
for implementing a dynamic repair priority policy, and a cor-
responding solution technique to find the optimal priority rule.
The proposed model can also serve as a tool to assist operation
managers in deciding whether it is economical to add an extra
technician.

2. Model assumptions and description

We  study a system consisting of two machines and one buffer
located between them, as described in Fig. 1. Work-pieces enter M1
from an outside source such as a raw material inventory. Finished
work-pieces from M1 are transferred to the buffer (denoted by B
in Fig. 1), where they wait until M2 is available to further process
them. Each machine processes one work-piece at a time. The buffer
has a limited capacity of pieces, denoted by the parameter N. The
buffer capacity includes the work-piece in M2. Work-pieces from
M2 are transferred onwards once finished. The state of machine Mi
is denoted by ˛i. When ˛i is 1 the machine is “up”, and when ˛i is
0 the machine is “down”. In this study, a “down” state means that
the machine is not operational, cannot process any work-pieces,
and is either waiting for repair or under repair. The situation in
which M1 is “up” and the buffer is full is called blockage. M1 will
start processing the next work-piece only after an empty space
becomes available in the buffer. When M2 is “up” but the buffer
is empty, M2 has no work-piece to process and therefore remains
idle. This situation is called starvation.  A machine can only fail dur-
ing processing, and therefore a machine’s state cannot be changed
from “up” to “down” if the machine is in a blockage or a starvation
situation. It is assumed that there will always be an available work-
piece for M1 to work on and available space to transfer a complete
work-piece from M2.

The state of the system is denoted by S = (n, ˛1, ˛2), where n is
the number of work-pieces waiting in the buffer. The steady-state
probability that the system will be in a certain state is denoted by
p(n, ˛1, ˛2). Each machine is characterized by three exponential
random variables: the processing time (with mean 1/�i), the time
to repair (with mean 1/ri, abbreviated MTTR) and the time to failure
(with mean 1/pi, abbreviated MTTF).

We assume that there is only one technician, and in the case
when both machines are down a preemptive repair discipline is
followed. That is if a machine with a higher priority fails when the
technician repairs the other machine, the technician interrupts the
current repair and immediately starts repairing the machine of high
priority.

In our model the repair priority is determined by one decision
variable, L, where 1 ≤ L ≤ N. When the number of pieces in the buffer
is equal to or greater than L, M2 is repaired first; otherwise, M1 is
repaired first. Our objective is to find the optimal L that maximizes
the line production rate, P, which is the number of work-pieces
produced in a given period of time.

To compute the line production rate we  first calculate each
machine’s efficiency Ei defined as the fraction of time during which
machine i produces pieces. We can express E1 and E2 as follows:

E1 =
N−1∑

n=0

1∑

˛2=0

p(n, 1, ˛2) (1)

E2 =
N∑

n=1

1∑

˛1=0

p(n, ˛1, 1) (2)

The quantity �iEi is the production rate of Mi, i.e., the rate at
which pieces emerge from machine i. According to the conservation
of flow (see, for example, Lemma  5 in [25]) the rate at which pieces
emerge from M1 is equal to the rate at which they emerge from M2.
The line production rate, P, defined as the rate at which work-pieces
emerge from the production line, is thus:

P = �1E1 = �2E2 (3)
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