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a  b  s  t  r  a  c  t

This  paper  addresses  a category  of  two dimensional  NP-hard  knapsack  problem  in  which  a given
convex/non-convex  planner  items  (polygons)  have  to  be  cut out of  a single  convex/non-convex  mas-
ter  surface  (stock).  This  cutting  process  is  found  in many  industrial  applications  such as  sheet  metal
processes,  home-textile,  garment,  wood,  leather  and  paper  industries.  An approach  is  proposed  to  solve
this problem,  which  depends  on  the concept  of the  difference  between  the  area  of  a  collection  of  poly-
gons  and  the  area  of  their  convex  hull.  The  polygon  assignment  inside  the  stock  is subjected  to feasibility
tests  to avoid  overlapping,  namely,  angle  test,  bound  test,  point  inclusion  and  polygon  intersection  test.
An  iterative  scheme  is used  to  generate  different  polygon  placements  while  optimizing  the  objective
function.  Computer  software  is developed  to solve  and  optimize  the  problem  under  consideration.  Few
examples  are  conducted  for  different  combinations  of convex,  non-convex  items  and  stocks.  Well-known
benchmark  problems  from  the  literature  are  tested  and  compared  with  our  approach.  The  results  of  our
algorithm  have  an  interesting  computational  time  and  can compete  with  the  results  of  previous  work
in  some  particular  problems.  The  computational  performance  of  the  developed  software  indicates  the
efficiency  of  the algorithm  for solving  2-D irregular  cutting  of  non-convex  polygons  out  of  non-convex
stock.

© 2013 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The process of packing a given set of 2-dimensional planner
items into a bin of minimal area is an intricate nesting problem
that has been known in many applications. These applications arise
in many industries such as clothing and textile, steel construction,
wood, glass, leather and paper industries. In fact, a great deal of
literature is found on such a problem [1–3].

Nesting problems are considered NP-hard due to their dif-
ficulty where no exact methods have been reported in the
literature, instead, only heuristic procedures have been developed
[4,5,22,28,29]. The heuristic methods presented in the literature
deal mostly with class of problems in which the objective is to
minimize the length of the master surface used. Such approaches
do not always suite problems where limited master surface is used
such as hides or sheet metals. Packing usually suites the division
of problems in which stock material comes in rolls. However, for
the case when limited length or bounded stocks are used, bin pack-
ing will result in degradation in the utilization of material. Instead,
the idea of knapsack problem can be put into practice to serve
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such purpose. The interested reader can come across appealing and
precise surveys about nesting [6,12].

Bin packing problem can be seen as a special case of the cutting
stock problem. In fact, when the number of bins is restricted to one
and each item is characterized by both area and value, the problem
of maximizing the value of items that can fit in the bin is known
as the knapsack problem which characterizes our work in this
paper.

Generally in most nesting problems, two  directions are fol-
lowed; the first deals with nesting strategies and their evaluation
criteria, such as minimizing area, minimizing length, minimizing
overlap and the evaluation criteria, i.e., waste, overlap, and distance
[8,9]. The second research direction addresses the search meth-
ods, that is, the order of item packing. For instance, Gomes and
Oliveira [10] presented a search technique based on a 2-exchange
neighborhood generation mechanism, simulated annealing [11],
hill climbing [9], nesting with defects [5], etc.

Quite a few studies were presented to address the problem of
nesting irregular shapes [7,13,14]. Most of this research imple-
mented the idea of No Fit Polygon (NFP) to detect potential overlap
between polygons [15]. As a matter of fact, the computational time
required to detect overlap has been significantly reduced with the
implementation of NFP algorithms which contribute most to the
packing computational time. The introduction of NFPs has moti-
vated most of the recent work in nesting problems.
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Remarkable breakthroughs in algorithms for nesting problems
have been achieved in recent years. Compared to previous stud-
ies, these solutions have noticeably enhanced the effect and speed
of nesting results. Remarkable methods were presented by Crispin
et al. [16], Burke et al. [9], Gomes and Oliveira [11], Egeblad et al.
[17], Lee et al. [18], Imamichi et al. [19], Sato et al. [20] and Alves
et al. [21]. In particular, Crispin et al. [16] described two  genetic
algorithms to solve the LNP arising in the shoe manufacturing
industry based on different coding methodologies. The problem
tackled by Crispin took directionality constraints into account
where imposing specific directions for the pieces in given regions
of the hides reduces the solution space.

The heuristic developed by Egeblad et al. [17] is based on a
simple local search plan in which the neighborhood is simply any
vertical or horizontal translation of a given polygon from its present
location. A guided local search is applied to escape local minima.
Lee et al. [18] describes a heuristic for placing irregular shapes on
multiple sheets. They use a simple nesting rule to place the shapes
one after another. Such placement is improved later by movement
and rotation operations. In [18], only one single experiment with
one instance is presented for nesting irregular shapes. Based on
nonlinear programming model, Imamichi et al. [19] combined iter-
ative local search with a swap procedure and a separation algorithm
to solve the overlapping minimization problem. Meanwhile, some
modern studies adopted the collision free region to determine fea-
sible layouts in containers with determined dimensions [20].

Alves et al. [21] explored different strategies for grouping,
selecting and placing the pieces inside the hides of leather, later
a quality evaluation of the placement is carried out. Alves approach
depends on the computation of the no-fit polygons. The quality
of placement was measured using a linear combination of the val-
ues of some attributes, particularly; the area, degree of irregularity,
degree of concavity, the ratio between length and width and qual-
ity zones. Specific weights have to be allocation for each quality
attribute which makes it vulnerable to human interaction.

In our study, the goal is to address cutting convex and non-
convex items out of a convex or non-convex stock. The proposed
methodology suites real industrial applications in the sense that it
imitates different blank/stock shapes.

The paper is organized as follows: the methodology is presented
in Section 2 in which we describe the problem, the waste minimiza-
tion, polygons representation, the algorithm steps, the objective
function and the geometric transformation. The implementation
of the algorithm is illustrated in Section 3 along with the pseudo
code and the different feasibility checks. Section 4 demonstrates
the built computation library and the CAD package. Next in Section
5, the model parameters are discussed followed by the experimen-
tal results of different knapsack problems in Section 6. Comparisons
with literature benchmark problems are provided in Section 7 fol-
lowed by the conclusions in Section 8.

2. Methodology

2.1. Minimizing waste

As in any classical 2-dimenstional knapsack problem, our objec-
tive is to maximize the aggregate value of the included items
(polygons) within a stock such that the items are bounded by the
stock with no overlap. Here, the value to be maximized is the sum
of the items’ areas. We  will simply attempt to cut as many types of
planner items as possible out of a convex/non-convex stock.

The idea of minimizing the waste in our approach depends on
the concept of the difference between the area of a collection of
polygons and the area of their convex hull. Convex hull is the outer
band that includes a set of points, or by definition, the convex hull or
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Fig. 1. A non-convex polygon and its convex hull.

convex envelope of a set F of points (vertices) in the Euclidean space
is the smallest convex set that contains F. Here, F includes all the
vertices of a set of non-overlapping polygons. An example of convex
hull is illustrated in Fig. 1. The polygon “A” has an area of 3 while
its convex hull has an area of 3.5 squared units. Note that convex
polygons will always have the same area as their convex hull, such
as rectangles, pentagons, hexagons, etc. Hence, these polygons will
have a zero difference between their areas and the areas of their
convex hull.

Consider a simple polygon placement procedure in which a unit-
square polygon “B” is to be placed on all the vertices of polygon “A”
that is, each vertex of “B” will be positioned on each vertex of A
while avoiding overlap, Fig. 2. Here, whenever a vertex of A is posi-
tioned on vertices of B, a new configuration will result. Obviously,
some of these configurations may  be infeasible due to the polygons
overlap or due to exceeding the stock boundaries. From a better
compaction point of view, the configuration with the minimum
convex hull area can be considered as one of the finest orienta-
tions. Fig. 2 shows some of the orientations and their related convex
hulls. Clearly, when the squared box “B” is positioned at the cut-off
in polygon “A” (the most right) it will result in the minimum convex
hull area, which equals to 4 squared units in this example.

Another example is given in Fig. 3. Common sense reveals that,
among all the different feasible orientations, positioning the trian-
gle as shown in configuration 2 is more preferred as it reduces the
bounding area. The convex hull in configuration 2 is less in area
as compared to configuration 1. Therefore, as a part of our pro-
posed methodology, the algorithm objective function will include
the minimization of the convex hull area of any collection of poly-
gons.

On the other hand, reducing the convex hull area does not nec-
essarily mean maximizing the utilization of stock area. For instance,
consider the situation when there are three polygons as presented
in Fig. 4. Placing polygon “C” in the large slot is more appropriate
than placing polygon “B” as the total area used inside the convex
hull will be larger. This condition is achieved despite that the convex
hull for both configurations is the same.

Accordingly, it is more convenient to use the difference between
the area of the convex hull containing all the polygons and the area
of the polygons. Nonetheless, in some situations different orienta-
tions may  result in the same difference between the convex hull
and polygons’ areas, although there might be some preference for
one over another. Fig. 5 demonstrates the idea that the three poly-
gons (A–C) have to be attached to each other in such a way that
will help minimizing the gaps. For simplicity it is assumed that
each polygon is constructed out of squared units. Positioning either
polygon “B” or “C” inside the cut-off of polygon “A” will result in the
same difference between convex hulls and polygon areas. Hence,
the algorithm objective function is modified to consider the relative
difference in the areas as compared to the area of the convex hull. In
this example, the difference is one unit in the configurations 1 and
2. However, it could be said that configuration 2 should be more
preferred than configuration 1. In order to impose a preference to
configuration 2, the relative difference is used. Here, the relative
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