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a  b  s  t  r  a  c  t

This  paper  analyzes  a repairable  M/M/1/N  queueing  system  under  a  threshold-based  recovery  policy.
The threshold-based  recovery  policy  means  that  the  server  breaks  down  only  if there  is  at  least  one
customer  in  the  system,  and  the  recovery  can be  performed  when  q (1 ≤  q ≤  N)  or  more  customers  are
present.  For  this  queueing  system,  a recursive  method  is  applied  to obtain  steady-state  solutions  in  neat
closed-form expressions.  We  then  develop  some  important  system  characteristics,  such  as  the  number
of customers  in  the  system,  the  probability  that  the  server  is  busy,  the  effective  arrival  rate  and  the
expected  waiting  time  in  the  system,  etc.  A  cost  model  is constructed  to determine  the  optimal  threshold
value,  the  optimal  system  capacity  and  the  optimal  service  rate  at  a minimum  cost.  In order  to solve  this
optimization  problem,  the  direct  search  method  and  Newton’s  method  are  employed.  Sensitivity  analysis
is  also  conducted  with  various  system  parameters.  Finally,  we  present  some  managerial  insights  through
an application  example.

© 2012 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Queueing systems with server breakdowns are very common in
stochastic systems, such as computer systems, communication sys-
tems, manufacturing systems, and so on. In this paper, we attempt
to investigate a finite capacity queue with an unreliable server
and threshold-based recovery policy. The threshold-based recov-
ery policy was introduced by Efrosinin and Semenova [4],  in which
the server may  break down unpredictably while providing ser-
vice for a customer, and the repair can only be performed when
q (1 ≤ q ≤ N) or more customers are present in the system. Fur-
thermore, Efrosinin and Winkler [6] examined an M/M/1 retrial
queue with constant retrial rate, unreliable server and threshold-
based recovery policy. Optimal threshold to minimize the long-run
average losses for the given cost structure was also discussed in
Efrosinin and Winkler [6]. The recent work of Purohit et al. [15]
that focused on an M/M/1  retrial queue with constant retrial policy,
unreliable server, threshold based recovery and state dependent
arrival rates. They utilized the Runge–Kutta method to compute
the steady state probabilities as well as various system performance
measures.
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Threshold policies have been widely investigated by many
researchers include Yadin and Naor [24], Heyman [8],  Balachan-
dran [1],  Gupta [7],  etc. The reader is referred to Crabill et al. [2]
for an excellent survey on the control of queues. One of the most
popular threshold policies is the N-policy studied by Yadin and
Naor [24]. The N-policy is to turn the server on whenever N (N ≥ 1)
or more customers are present in the system, and then turn the
server off only when the system becomes empty. Indeed, extensive
research works on the N-policy queue with a reliable server has
been done in Yadin and Naor [24], Kimura [13], Teghem [17], Wang
and Huang [18,19],  Wang and Ke [21], and so on. For cases with
server breakdowns, exact steady-state solutions of the N-policy
M/Ek/1, M/H2/1 and M/Hk/1 queueing systems were developed by
Wang [22], Wang et al. [20] and Wang et al. [23], respectively.
Ke and Wang [11] examined the N-policy M[x]/M/1 queue with
server breakdowns and startup time, in which the arrival rate varies
according to the status of the server. In the result of Ke [9],  it
showed that the stochastic decomposition property holds for the
steady-state probabilities and departure point queue size distribu-
tion in the N-policy M[x]/M/1 vacation queue with an un-reliable
server. The study of an N-policy M/M/1  queueing system with het-
erogeneous arrivals, server breakdowns and multiple vacations has
been discussed by Ke and Pearn [12]. They not only constructed a
cost model to determine the optimal management policy, but also
performed a sensitivity analysis on the optimal value of N. Further-
more, Pearn et al. [14] studied the N-policy M/G/1 queueing system
with server breakdowns, and derived analytical results of the sen-
sitivity analysis. Using the stochastic decomposition approach, Ke

0278-6125/$ – see front matter ©  2012 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jmsy.2012.06.002

dx.doi.org/10.1016/j.jmsy.2012.06.002
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
mailto:yangdy@webmail.ntcb.edu.tw
dx.doi.org/10.1016/j.jmsy.2012.06.002


D.-Y. Yang et al. / Journal of Manufacturing Systems 32 (2013) 174– 179 175

[10] analyzed the bi-level control policy M[x]/G/1 queueing sys-
tem with server breakdowns. He derived the probability generating
function of the number of customers in the queueing system for
two different models. Choudhury et al. [3] applied the supple-
mentary variables technique to investigate an M[x]/G/1 with an
additional second phase of optional service and unreliable server
under N-policy. Recently, Efrosinin and Semenova [5] considered
the N-policy M/M/1  queue with constant retrial rate and non-
reliable removable server. In Efrosinin and Semenova [5],  they
developed analytical steady-state results and derived the explicit
formula for calculating the optimal N-policy.

There are many literatures on the N-policy queue in different
frameworks. However, to the best of our knowledge, there are
few works on the queue with a threshold-based recovery policy.
This motivates us to investigate a finite capacity queue with server
breakdowns and threshold-based recovery policy. The remainder
of this paper is organized as follows. Section 2 describes the basic
assumptions of the queueing model. In Section 3, we derive the
analytical solutions for the queueing model in neat closed-form
expressions. Some important system characteristics are developed
in Section 4. In Section 5, an expected cost function per unit time is
established to determine the optimal system capacity, the optimal
threshold value and the optimal service rate. Moreover, this opti-
mization work is carried out by means of the direct search method
and Newton’s method. Section 6 provides an application example to
demonstrate how the model could be applied in practical situations.
Finally, we draw conclusions in Section 7.

2. Basic assumptions

We  consider the M/M/1/N  queue with server breakdowns
and threshold-based recovery policy. The basic assumptions are
described as follows:

(1) Customers arrive at the system according to a Poisson process
with parameter �.

(2) Arriving customers form a single waiting line based on the order
of their arrivals, that is, the first-come first-served (FCFS) disci-
pline.

(3) Service times during a busy period follow an exponential dis-
tribution with mean 1/�.

(4) The server can serve only one customer at a time. If the server is
busy, arriving customers must wait until the server is available.

(5) The server can break down only if there is at least one cus-
tomer in the system. The breakdown times are assumed to be
exponential with breakdown rate ˛.

(6) When the server breaks down, the server cannot be repaired
until the number of customers in the system reaches a speci-
fied threshold value q (1 ≤ q ≤ N). Repair times are exponentially
distributed with mean 1/ˇ.

(7) After the server is repaired, he returns to the system and pro-
vides service until the system becomes empty.

(8) N (N < ∞)  denotes the system capacity.
(9) Various stochastic processes involved in the system are

assumed to be independent of each other.

3. Steady-state results

In this section, we  first apply the Markov process theory to
obtain the steady-state equations. Next, a recursive method is
employed to develop the analytical solutions in a neat closed-form.
Let us define some notations in the following:

N(t) ≡ the number of customers in the system at time t,

Y(t) ≡ the server state at time t,

where

Y(t) =
{

0, if the server is in busy period,

1, if the server is in brokendown period.

Then {Y(t), N(t); t ≥ 0} is a continuous time Markov process with
state space

S = {(0, n)|n = 0, 1, . . . , N} ∪ {(1, n)|n = 1, 2, . . . , N}.
Furthermore, the steady-state probabilities of the system are

defined as follows:

P0(n) = lim
t→∞

{Y(t) = 0, N(t) = n}, n = 0, 1, . . . , N.

P1(n) = lim
t→∞

{Y(t) = 1, N(t) = n}, n = 1, 2, . . . , N.

3.1. Steady-state equations

Referring to the state-transition-rate diagram for the M/M/1/N
queue with server breakdowns and threshold-based recovery pol-
icy as shown in Fig. 1, we obtain the steady-state equations for P0(n)
and P1(n) in the following:

�P0(0) = �P0(1) (1)

(� + � + ˛)P0(n) = �P0(n − 1) + �P0(n + 1),  n = 1, 2, . . . , q − 1,

(2)

(� + � + ˛)P0(n) = �P0(n − 1) + �P0(n + 1) + ˇP1(n),

n = q, q + 1, . . . , N − 1, (3)

(� + ˛)P0(N) = �P0(N − 1) + ˇP1(N), (4)

�P1(1) = ˛P0(1),  (5)

�P1(n) = �P1(n − 1) + ˛P0(n), n = 2, 3, . . . , q − 1, (6)

(� + ˇ)P1(n) = �P1(n − 1) + ˛P0(n), n = q, q + 1, . . . , N − 1, (7)

ˇP1(N) = �P1(N − 1) + ˛P0(N). (8)

3.2. Recursions for the Pi(n)

Solving Eqs. (1)–(8),  recursively, we  obtain analytical solutions
Pi(n) (i = 0, 1) in neat closed-form as follows:

P0(1) = �

�
P0(0), (9)

P0(n) = �

�
P0(n − 1) + ˛

�

n−1∑
k=1

P0(k) , n = 2, . . . , q, (10)

P0(n) = �

�
P0(n − 1) − ˇ

�

n−1∑
k=q

P1(k) + ˛

�

n−1∑
k=1

P0(k) ,

n = q + 1, q + 2, . . . , N − 1, (11)

P0(N) = �

�
[P0(N − 1) + P1(N − 1)],  (12)

P1(n) = ˛

�

n∑
k=1

P0(k), n = 1, 2, . . . , q − 1, (13)
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