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Abstract

Experimentation is required for modeling empirical functions and optimization. In manufacturing, experiments are costly and time-
consuming, thereby limiting the number of function evaluations. This paper describes a value of information method for experimental
design and optimization using surrogate modeling. Value of information is defined as the absolute difference between optimal value
before experiment and the expected optimal value after experiment, or, the expected improvement in the optimum after experiment.
The value of information based experimental design performs better than the traditional statistical design of experiments such as Taguchi
orthogonal arrays, and central composite design, especially in three or more dimensions.
� 2014 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
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Empirical functions are typically evaluated using exper-
imentation over the range of process parameters. Examples
in the manufacturing literature are surface roughness mod-
eling in milling [1–3], turning [4–5], and laser assisted
machining [6], tool life modeling [7–9], geometric error in
grinding [10–11], material removal rates in electric dis-
charge machining (EDM), and polishing [12–14]. The goal
of experimentation is to find the process parameters for
optimizing the objective function, such as material removal
rate or surface roughness. The experimental design is typi-
cally carried out using design of experiment (DOE) meth-
ods for optimizing the number of experiments required to
achieve a desired output [15,16]. However, traditional
DOE methods such as Taguchi orthogonal arrays, central
composite design, or factorial design are sub-optimal for
two reasons. First, DOE typically requires a fixed number
of experiments which are decided prior to any testing and
do not take into account the cost of performing the exper-

iments. For example, for three or more process variables,
the experimental cost for tool life modeling may be large.
Second, DOE does not consider the economic impact of
uncertainty reduction to the decision maker and the uncer-
tainty in the experimental outcomes.

To address these limitations, this paper describes a value
of information method for experimental design and optimi-
zation of empirical functions using surrogate models. Value
of information (VOI) is defined as the absolute difference
between optimal value before experiment and the expected
optimal value after experiment, or, the expected improve-
ment in the optimum after experiment [17,18]. The funda-
mental principle governing the value of information
method is that an experiment is only worthwhile if the
value gained from the experiment is more than the cost
of performing the experiment [17]. An experiment should
be performed at the process variables which add the most
(expected) value. The approach is advantageous over tradi-
tional DOE as it considers the importance of uncertainty
reduction to the decision maker by assigning a value to
the information gained from an experiment, takes into
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account the underlying objective of experimentation, and
the probabilistic nature of the experimental results and its
impact on the objective function [17]. The value of infor-
mation is a normative and robust figure of merit as it bal-
ances local and global search by exploiting regions where
the cost function is minimized (local) and by exploring
regions where the prediction uncertainty is high (global)
[19,20]. The value of information method has not yet been
applied for experimental design in manufacturing; the main
contribution of this paper is to demonstrate the method for
experimental design and optimization using surrogate
models. A generalized framework is presented and poten-
tial applications in the manufacturing domain are listed.

1. Surrogate modeling

Surrogate models offer an attractive solution for model-
ing empirical functions in the absence of any physics based
models. Examples of surrogate models are kriging, Gauss-
ian process regressions, support vector machines, radial
basis functions, and polynomial response surface [21,22].
For brevity, the reader is referred to [21,22] for mathemat-
ical modeling and the theory behind developing the surro-
gates. The choice of the surrogate model depends on the
application and the experimental uncertainty. To illustrate,
kriging is an exact interpolator for predicting the distribu-
tion of a random field at unobserved locations and is
applicable in situations where the experimental outcomes
are deterministic or the uncertainty is negligible. In applica-
tions such as surface roughness modeling in machining,
multiple measurements can be made along the machined
surface and the experimental outcome taken as the average
value of the measurements. In this case, kriging models the
expected value of the optimization variable of interest. An
alternative approach is modeling using Gaussian process
regression which takes into account the experimental
uncertainty in the variable of interest.

Let y be a one dimensional objective function of interest,
dependent on variable x. For example, the function y can
be tool wear, machining cost, or surface roughness in

milling and x can be the process parameters such as cutting
speed, or feed rate. The objective is to optimize the number
of experiments required to find the minimum value of y and
the corresponding value of x. Note that the true location of
the optimum is not known, and therefore, uncertain. Fig-
ure 1 shows the kriging (left) and Gaussian process (right)
prediction after four experiments. The solid line represents
the prediction mean and the dotted line shows the ±3r
bounds, where r is the standard deviation. The surrogate
model parameters can be tuned to maximize the likelihood
of experimental results. Based on the four experimental
results, the current optimum value, ymin, is 7.2 at x = 1.8;
the optimum is taken as the minimum from the experimen-
tal results. Note that although the paper uses kriging pre-
dictions, shown in Figure 1 (left), to calculate value of
information, the procedure is applicable to alternative
models such as Gaussian process regression.

2. Experimentation

This section describes the steps to calculate the value of
information for experimental design. The first step is to
investigate if any additional experimentation is necessary.
The value of perfect information (VOPI), also called as
the value of clairvoyance, gives the value of eliminating
uncertainty through experimentation [17,23]. VOPI is the
expected improvement from the current optimum
(ymin = 7.2) if the true function was known with certainty.
In simple words, VOPI gives the maximum value the user
would be willing to pay a clairvoyant to know the true
optimum. VOPI places an upper bound on the costs of
experimentation; experimentation is not necessary if the
costs of the experiments exceed the VOPI. For a minimiz-
ing function, VOPI is given by Eq. (1).

VOPI ¼ optimal value before experiment

� Eðoptimal value after perfect informationÞ ð1Þ

For the function under consideration, VOPI was calculated
as follows. Random samples were drawn from the kriging
predictions shown in Figure 1 (left) using the mean,

Figure 1. Surrogate model predictions after four experiments using kriging (left) and Gaussian process regression (right). The experimental results are
denoted by ‘*’.
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