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Abstract 

The two types of failure to achieve design functional requirements (FRs) are: Type I, the design cannot hit the FR targets; Type 
II, it cannot hit them consistently. The causes are due to inter-dependence among the FRs in Type I; and due to build and usage 
variability of the design in Type II. In this paper, we develop a mathematical understanding for the two types of failures. The 
underpinnings are Jacobian matrix of FR with respect to input variables for Type I failure; and Jacobian matrix of FR with 
respect to noise (sources of variability) variables for Type II. Since Independence axiom and Information axiom of Axiomatic 
Design relate to the interdependence and variability of FRs, the understandings developed herein also serve as the mathematical 
underpinnings for the two design axioms. The design of snap-fit is used to illustrate the concept and process involved. 
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1. Introduction 

Prior to the late 1970’s, design was looked upon more as 
an art than a science.  There was no scientific basis to assess 
goodness of a design, so that we had to resort to build and test 
for assessment.  In 1979, Axiomatic Design Theory (AD) was 
introduced to make design more of a science than an art.  It 
introduced axioms to define goodness of design and guided 
the designers through the design process.  The axioms are 
assumed to be self-evident truths for which there are no 
counter-examples or exceptions. They cannot be proven nor 
derived from other laws or principles of nature, [1]. 

AD is a big step toward the goal of establishing design as 
a science. In spite of its successful applications, rejection of 
AD persists in part of design community. The primary reason 
is the axiomatic assumption it imposes. Typical criticisms are: 
“AD people invoke axioms to avoid proof of theory”; “AD is 
not a mathematically valid method”. We understand and feel 
for these criticisms. Thus in this paper, we develop a 
mathematical basis in place of axiomatic assumption to further 
advance design as a science. 

First, we establish the mathematical basis by considering 
the primary objective in design. It is to achieve the target 
values of the design FRs with reduced variation around them. 
Failure to achieve the objective can occur in two ways:  
   Type I – functional coupling makes adjustment of design 
parameters (DPs) to achieve target values of FRs difficult; and  
   Type II – corruption by ‘noise’ that causes variation in FRs. 
In Section 2, we cast the adjustment of DPs to achieve targets 

of FRs as a root-finding problem.  As a result, the crux of 
Type I failure is revealed in Section 3 as the failure to find 
roots due to functional dependence among the FRs. In Section 
4, we introduce the concept of noise to express Type II failure 
in terms of bias and spread of FRs induced by noise.  This 
enables us to treat Type II failure as an optimization problem 
minimizing spread subject to the constraint that bias equals 
zero. In Section 5, we discuss the relevance of above findings 
to Axiomatic Design.  In Section 6, the design of snap-fit is 
used to demonstrate the mathematical understandings and 
their implementation. Some of the concepts herein were 
developed earlier in [2].  We end with concluding remarks in 
Section 7. 

2. Achieving the targets of FRs is root-finding  

Usually, a design has multiple functional requirements 
FRs.  These FRs are realized with physical entities which we 
label as design parameters DPs through physical laws that 
relate FRs to DPs which we denote as , k = 1, 2, , n. 

 

 

FR1 = f1 DP1, ,DPm( )

FRn = fn DP1, ,DPm( )
 

 
Or in vector form, 

 
FR = f (DP) 

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the 26th CIRP Design Conference



229 Hilario (Larry) Oh  /  Procedia CIRP   50  ( 2016 )  228 – 233 

In the above and hereafter, bolded quantities denote vectors, 
bracketed quantities denote matrices and f (•) denotes vector 
valued functions.  
 Note that the target values of functional requirements FR* 
are known.  Thus, the task of adjusting DP to achieve target 
values FR* is equivalent to finding the root DP* that satisfies: 
 

  
 
Frequently, the vector valued function f (DP) is nonlinear.  So 
that it is not possible to solve  analytically.  Instead 
numerical methods are used to approximate the solution.  One 
such method is the Newton-Raphson in which the nonlinear 
problem is replaced by a succession of linear problems whose 
solutions converge to the solution of the non-linear problem.  
Specifically, to find DP that satisfies 
 

, (1) 
 

we approximate the function f(DP) by its first-order Taylor 
expansion about  DPk  to obtain: 

 

   f (DP) ≈ f (DPk ) + [JDP ](DP − DPk )  (2) 
 
In the above, the superscript k denotes the kth iteration and 
[JDP] is the n x n Jacobian of f(DP) with respect to DP 
evaluated at   DPk shown below.   
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Note that the dimension of FR n is generally not equal to 

the dimension of DP m. If n > m, Type I failure will occur 
since there is insufficient DP to satisfy FR.  If n ≤ m, then we 
choose one of the C(m, n) combinations of Jacobian [JDP] with 
dimension n x n that ensures functional independency as 
described in the next section. 

Solving for the root of Equation (1), we have 
 

   f (DPk ) + [JDP ] (DP − DPk )−FR* = 0  
 

DPk+1 = DPk − JDP⎡⎣ ⎤⎦
−1

f (DPk )−FR*⎡⎣ ⎤⎦  (4) 
 

Iteration is made of Equation (4) with k = 0, 1, 2 …  until 

  
DPk+1 − DPk  is less than a desired accuracy.  At which point 

  DPk+1 serves as the root  DP* to Equation (1). It is the value 
with which to tune FR to its target value FR*.  

3. Linking root-finding to functional dependency 

The crux to Type I failure is revealed in Equation (4). If 
the determinant |JDP| = 0  then the inverse of the Jacobian 

 does not exist.  So that no root can be found that will 
satisfy Equation (1). Namely, FR cannot achieve its target 
value. The condition that leads to  | JDP| = 0 can be traced to 
the functional dependence among the FRs.  In the next 
section, we derive the mathematics surrounding this condition.  
The derivation is confined to two FRs involving two DPs.  
Still, the logic holds true for n FRs involving n DPs, n >2. 

Consider a design with two FRs involving two DPs.  They 
are related via physical laws  f1(DP1,DP2 )  and 

 f2(DP1,DP2 ) : 
 
FR1 = f1 DP1,DP2( )
FR2 = f2 DP1,DP2( )  
 
A Taylor series expansion of  FR1  and  FR2  about their 

targets FR1
*  and FR2

*  retaining only the first-order terms gives, 
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We eliminate DP2 by subtracting ∂FR1/∂DP2 x Equation (6) 
from ∂FR2/∂DP2 x Equation (5): 
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is determinant | JDP|: 
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If |JDP| = 0, then per Equation (7),  FR2  is a function of  FR1 : 
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Hence, 
 
  |JDP| =0 implies functional dependence of  FR2 on  FR1 .     (I) 

 
We next prove the converse is true. We start with the 

formal definition of functional dependency. Namely,  FR2  is 

functionally dependent on  FR1  if it is a function of  FR1 :  

 FR 2 = FR2(FR1)   
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