

Available online at www.sciencedirect.com

Procedia CIRP 46 (2016) 352 - 355

7th HPC 2016 - CIRP Conference on High Performance Cutting

Effects of different cutting edge preparation methods on micro milling performance

E. Uhlmann^{a,b}, D. Oberschmidt^b, Y. Kuche^a, A. Löwenstein^b, I. Winker^a*

^aInstitute for Machine Tools and Factory Management (IWF), Technische Universität Berlin, Pascalstraße 8-9, 10587 Berlin, Germany ^bFraunhofer Institute for Production Systems and Design Technology (IPK), Pascalstraße 8-9, 10587 Berlin, Germany

* Corresponding author. Tel.: +49 30 39006 438. E-mail address: winker@iwf.tu-berlin.de

Abstract

In micro milling, which is mostly used in mold and die making, process reliability and predictability of tool failure are important. Particularly in precision and micro machining, tool breakage is hardly detectable and the requirements on accuracy are very high. Immersed tumbling is an appropriate process for the defined cutting edge preparation of micro milling tools. Its effects like increasing tool wear performance and tool life has been evaluated. In this paper, different cutting edge preparation processes showed that in cutting tests different effects occur regarding tool wear, process forces and surface quality. Immersed tumbling leads to the lowest active force F_a, but magnet finishing leads still do a slightly better surface quality.

© 2016 Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the International Scientific Committee of 7th HPC 2016 in the person of the Conference Chair Prof. Matthias Putz

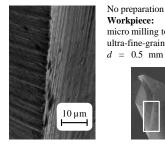
Keywords: Cutting edge preparation; micro milling, process reliability

1. Introduction

The use of micro milling tools with a diameter of $d \le 1 \text{ mm}$ is widely spread in mold and die making. It is also applied in the direct production of parts in the micro range and the micro texturing of surfaces. Compared to macro milling, the tool diameter d and the chip thickness h is decreased, but it is not possible to decrease the rounded cutting edge radius r_{β} in the same scale. Therefore the ratio of the chip thickness to the rounded cutting edge radius h/r_{β} is decreased. Because of this effect, established technological parameters of macro milling are not directly transferable to micro milling [1]. The minimum chip thickness h_{min} , determined by the rounded cutting edge radius r_{β} , can surmount the chip thickness h, whereby elastic-plastic behavior begins to dominate the cutting process. This behavior is known as ploughing. The workpiece material is not longer sheared off by the cutting edge, but partially or completely pushed into the newly formed workpiece surface beneath the tool [2]. The reason for ploughing is a negative tool orthogonal rake angle γ_0 , which prevails when the chip thickness *h* is clearly within the dimension of the rounded cutting edge radius r_{β} [3].

Nomenclature		
a_e	width of cut	
a_p	depth of cut	
d	tool diameter	
F_a	active force	
F_{pr}	process forces	
F_z	resultant force	
f_z	feed per tooth	
h	chip thickness	
h_{min}	minimum chip thickness	
h_0	burr height	
l_c	path length	
Ra	arithmetical mean deviation	
Rz	mean roughness depth	
rβ	rounded cutting edge radius	
v_c	cutting speed	

2212-8271 © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


Peer-review under responsibility of the International Scientific Committee of 7th HPC 2016 in the person of the Conference Chair Prof. Matthias Putz

VB	width of flank wear land
z	number of teeth
z. Yo	tool orthogonal rake angle

The tool grinding process usually produces an irregular cutting edge geometry. Thus in the subsequent milling process can be induced stress peaks inside the tool material which leads to edge breakouts or spalling of the coating. Tools can be finished with cutting edge preparation processes. These technologies can provide a rounded cutting edge radius r_{β} approaching the segment of a circle, which is constant over the cutting edge. The rounded cutting edge radius r_{β} should not rise too much to avoid ploughing [4, 5, 6, 7, 8]. This paper compares four of these processes: brush polishing, polish blasting, magnet finishing and immersed tumbling.

2. Cutting edge preparation processes

Brush polishing is classified as a cutting process, where the tool consists of bristle materials e.g. sisal, cord or synthetic fibre, attached to a rotationally symmetric brush form of tool holder [9]. The other technologies are classified as abrasive processes. Polish blasting is abrasive blast cutting with abrasive particles whose diameter is d < 0.4 mm. Magnet finishing is a technology, where ferromagnetic abrasive grains are attached to the face side of a rotating magnetic head. Due to the magnetic forces F_m the grains get tagged along with the magnetic head and the workpiece is held into them. For immersed tumbling, the workpiece is plunged with the kinematics of a planetary gear into a tank of abrasive material paste [10]. At the INSTITUTE FOR MACHINE TOOLS AND FACTORY MANAGEMENT IWF, tests have been conducted to the formation of cutting edge geometries, dependent on the cutting edge preparation process. The Fig. 1 shows the cutting edge of a micro milling tool, which was not machined with a cutting edge preparation technology [11].

Workpiece: micro milling tool ultra-fine-grained carbid d = 0.5 mm

Fig. 1. micro milling tool after final grinding with no additional edge preparation [11]

The Fig. 2 shows four micro milling tools of the same batch, prepared with the named cutting edge preparation processes. Brush polishing and polish blasting produce cutting edge cavities, particularly the latter one. It is more similar to a chamfer than a rounded cutting edge radius r_{β} . Magnet finishing and immersed tumbling, however, provide a constant rounded cutting edge radius r_{β} which fits basically the segment of a circle [11]. Tests at the IWF attest the micro milling tools, which are prepared with immersed tumbling, a

reduction of the width of flank wear land VB by 14 % and a reduction of the variation of wear by 95 %, which allows to set closer limits for the time frame to replace the tool; a precondition for an economical use of the tools. Furthermore the active force F_a has less peaks, compared to tools with no preparation [5].

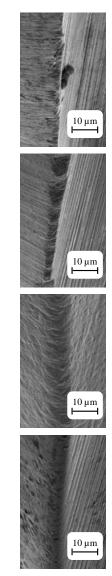
n_w

 n_{B}

 α_M

Brush polishing

= 45


= 80

Bristle material: horsehair with

Process parameters: 0 1/min

= 200

1/min

diamond paste Polish blasting **Process parameters:** 20 1/min n_w =40 1/mm = S_{b} 45 α_M = 0.3 N/mm² = p_b 9 = s t_M 50 d_{G} = μm **Polishing medium:** glas beads of silicon dioxide Magnet finishing **Process parameters:** 100 1/min n_w n_M _ 200 1/min α_M = 45 6 = t_M 40 d_{Gmin} = μm = 100d_{G max} μm **Polishing medium:** BP 22 (abrasive material from Magnetfinish GmbH) Immersed tumbling **Process parameters:** = 2001/min n_C 80 = 1/min n_{h} = 70 d_p mm 60 = t_M s $d_{G,min}$ = 400μm = 800 $d_{G,max}$ um Abrasive material paste: H 4/400 (walnutshellgranulate with diamond

Fig. 2. micro milling tools with different preparations [11]

Compared among themselves, magnet finishing and immersed tumbling lead to lower resultant forces F_z than brush polishing and polish blasting. The Fig. 3 shows the levels of the resultant forces F_z in line milling depending on the path length l_c . Magnet finishing and immersed tumbling also result in a lower tool wear. It is reduced by 9 % compared to brush polishing, and reduced by 14 % compared to polish blasting. The mean roughness depth Rz and the burr height h_0 are increased. Prepared with polish blasting, tools

paste)

Download English Version:

https://daneshyari.com/en/article/1698441

Download Persian Version:

https://daneshyari.com/article/1698441

Daneshyari.com