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Abstract 

Dynamic, quasi-static and motion control deviations lead to nonlinear but systematic tracking errors. It is shown that these errors can be 
reduced significantly by adjusting the set points using an optimization based iterative learning approach. This method uses either values 
obtained from internal encoders or alternatively tool center point measurements. The approach is presented, discussed and validated using 
simulation and measurement results. 
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1. Introduction 

Dynamic, quasi-static and motion control deviations lead 
to nonlinear but systematic tracking errors of machine tools. 
The goal of iterative learning is to learn from systematic and 
repeatable errors of previous trials and to improve the 
following trial. Machine tools typically do not learn from 
previous experience. Especially in high-volume production, 
where a given part is produced multiple times, it is desirable 
to reduce tracking errors. A reduction of tracking errors would 
either allow higher feed rates, leading to the same dynamic 
deviations, or to reduce contour errors, using the same feed 
rate. According to Bristow et al. [1], iterative learning control 
(ILC) modifies the input of the controller of a system and not 
the controller itself, as for example adaptive control and 
neural network strategies do. Repetitive control is similar to 
ILC but for continuous operations, i.e. the next iteration 
follows immediately and the initial conditions are given by 
the final conditions of the previous trial.  

A lot of work has been done in the field of ILC; a good 
survey is given by Bristow et al. [1] and Ahn et al. [2]. 

The basic idea of ILC was published by Garden [3] in 
1971. The algorithm was presented for the first time in 

English by Arimoto et al. [4] in 1984, where an iterative 
learning scheme for a robot manipulator was proposed. 

Feedforward control can compensate tracking errors 
caused by lag and has good performance if the system is 
known accurately. Stiction, not modelled nonlinear behavior 
and disturbances can limit the performance of feedforward 
control [1]. ILC can compensate any nonlinear, but repeatable 
disturbance. The performance of ILC is limited by 
unrepeatable disturbances and noise. The influence of the 
latter can be reduced by zero-phase filtering, e.g. Butterworth, 
which is possible without lag. A combination of feedback 
control and ILC is recommended by [1]. 

Togai and Yamano [5], e.g., formulated the iterative 
learning control problem as a quadratic optimization criterion 
and therefore, reduced the error and additionally the input. 
Penalizing also the input, the error cannot be reduced to the 
minimal achievable error. Amann et al. [6], Lee et al. [7] and 
Barton et al. [8] extended the cost function by the input 
change instead of the input.  Therefore, the ILC algorithm has 
an integral action in the iteration domain and the minimal 
achievable error is attainable. It is possible to consider 
constraints, disturbances and model errors for example. 

Kim and Kim [9] presented the proportional, integral and 
derivative (PID) type ILC algorithm of [4] for a machine tool, 
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where the actual machined path was measured using a 
roundness measuring instrument. A decrease of 58% of the 
error between the measued and the desired path is shown for 
cutting circles with radius of 29.7 mm and a feed rate of 200 
mm/min. Tsai and Chen [10] applied the PID type ILC 
algorithm of [4] to reduce the deviation between the desired 
cutting and actual fracture trajectory for a CO2 laser machine 
tool. Tsai et al. [11] proposed a P-type ILC algorithm with 
predicted tracking and contour error and compared the 
performance of the error reduction for different weightings of 
those errors. An application for improving contour error 
tracking in precision motion control was presented by Altin 
and Barton [12]. The norm optimal framework was used to 
minimize the tracking error, contour error and input change. 
Using a model of the contour error, Wu et al. [13] proposed 
an A-type iterative learning cross-coupled control that was 
based on a contour error model and showed the convergence 
of it. Khong et al. [14] proposed an extremum seeking 
approach to iterative learning for nonlinear time-varying 
systems. 

In this paper, the optimization based ILC approach, 
proposed e.g. by Barton et al. [8], is used and compared to the 
commonly used PD-ILC algorithm presented by [1]. The 
quadratic optimization formulation is called convex 
optimization (CO) ILC in the remainder of this paper. 

2. Comparison of ILC algorithms 

2.1. Overview of ILC methods 

The general application scheme of the ILC algorithm is 
shown in Fig. 1. The plant P represents any dynamic system, 
e.g. a machine tool servo axis and C represents the controller. 
The tracking error of the iteration j, ej, is given by the 
deviation between the desired trajectory, yd, and the actual 
measurement, yj. The input of the iteration j is uj. Only 
asymptotically stable closed-loop systems are considered in 
this paper. Note that ej, yd, yj and uj are vectors of length N, 
where N is the number of time discrete trajectory samples. 
The computation of uj is repeated for each iteration. 
Therefore, ILC can be used online or offline. 

 

Fig. 1. General application scheme of the ILC algorithm. 

In this paper, two types of ILC algorithms have been 
implemented and compared: 

 PD-ILC with a Butterworth low pass filter as 
presented in [1] 

 CO-ILC with a second order model representing 
the closed loop servo axis behavior of each axis 

No model is needed for PD-ILC, whereas for CO-ILC a linear 
time invariant model of the closed loop system dynamics is 
required (1). For an initial state xj[0]=0, the servo loop 

dynamic matrix Pcl, using the state space closed loop 
dynamics in (2), can be derived as shown in (3). The indices j 
and n denote the iteration and time sample, respectively.  
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2.2. PD-ILC 

The PD-ILC algorithm is defined, using the nomenclature 
in Fig. 1, the gains ,  and the low pass filter Q, as 
follows: 
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A stability criterion and a condition for monotonic 
convergence is presented in [1]. It is shown that, in order to 
ensure convergence, a low pass filter, Q, is required. 

2.3. CO-ILC 

CO-ILC is a special case of the optimization based ILC 
framework presented in [8]. The difference of the input 
between subsequent iterations is given by 

jjj uuΔu 11 .              (5) 

The predicted error ej+1 of the next iteration, using the 
linear plant model Pcl, is given by 

11 jjj ΔuPee cl .              (6) 

The cost function of the optimization problem consists of 
two parts, the tracking error and the weighted velocity of the 
input difference: 

 11 jj ΔuPeJ cl and 12 jd ΔuDJ .                       (7) 

Minimizing J1
TJ1 + J2

TJ2, using (5) as state vector and the 
scalar weighting factor , the following quadratic program 
can be stated: 
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H and f are defined as 
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The matrix D is given by  
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which leads to smooth input signals. 
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