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Abstract 

Nickel-based super alloys such as Inconel 718 are widely employed in extremely hostile applications owing to their superior thermo-mechanical 
properties. On the contrary, these latter lead the industries to adopt conservative process parameters (e.g. low cutting speed) resulting in lower 
production rates. The possibility to increase the cutting parameters could lead to higher material removal rates and drastic reduction of the 
machining time of the process. The aim of this study is to investigate the effects of extreme cutting parameters on the surface and subsurface 
alterations such as grain size and hardness changes by developing a finite element (FE) numerical model. The Zener-Hollomon and Hall-Petch 
equation were implemented to predict the grain size and micro hardness variations due to the cutting process. In addition, the depth of the affected 
layer due to machining was predicted using the critical strain equation. The obtained results proved the accuracy and reliability of the proposed 
FE model showing a good agreement between the simulated and the experimental results. 
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1. Introduction 

Amongst the super alloys used in aero engine manufacturing, 
nickel-based alloys stand out particularly; in fact they are the 
most used in terms of weight percentage for aerospace 
applications. This wide usage is attributed to their extremely 
high thermo-mechanical properties such as high resistance to 
corrosion, high strength to weight ratio, high fatigue and creep 
resistance, etc. 

Within nickel-based alloys, Inconel 718 super alloy is one of 
the most used for artefacts that work in high temperature 
conditions, such as the critical components of the aircraft 
engines, nuclear power plants and marine equipment. This 
super alloy is considered one of the most difficult-to-machine 
material because of its rapid work hardening and low thermal 
diffusivity [1]. The mechanical and thermal loads imposed on 
the workpiece by the machining process could cause some 

microstructural and metallurgical alterations on the machined 
surface and sub-surface layer. These alterations include grain 
refinement and surface hardness changes that affect the 
mechanical behaviour of the machined components and impact 
their fatigue life [2, 3]. 

Having a numerical model that can predict i) the material 
thermo-mechanical behavior and ii) the evolution of the 
microstructure consequential to machining process, is 
important to obtain feedback information and establish control 
of the machining process and achieve the desired surface 
integrity. This will also lead to avoiding many long and 
expensive experimental trials [4].  

In this paper we have investigated for the orthogonal 
machining tests that involve a range of cutting speeds, 
exceeding the commonly used speeds within industries for 
Inconel 718 alloy. Subsequently, the development of a 
customized numerical model is shown and the numerical 
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results in terms of cutting forces, chip morphology and surface 
integrity (hardness and grain variations) are compared with the 
experimental ones. Zener-Hollomon and Hall-Petch equations 
are implemented to simulate the grain refinement and the 
hardness variation both on the worke subsurface and along the 
depth. 

2. Experimental procedure 

The experimental tests were performed under dry cutting 
conditions at the Advanced Manufacturing Research Centre 
with Boeing, The University of Sheffield. The workpiece 
material used was an Inconel 718 tube of outer diameter 102 
mm and inner diameter 89 mm, with a nominal chemical 
composition of 53.9% Ni, 18.5% Cr, 5.11%Nb,  5.11% Ta, 
3.03% Mo, 0.49%Al, 1.01%Ti, 0.09% Co, 0.05% Si, 0.05% 
Mn, 0.03% Cu, 0.022% C and Fe balance (all weight percent). 
The tube was solution annealed and aged to a surface hardness 
of 40 HRC. 

Orthogonal turning trials were performed (three repetition 
for each case analysed) under dry cutting conditions on Starrag 
STC 1250 lathe, with the workpiece stationary and tool 
revolving around its spindle (Figure 1). A standard Sandvik 
Coromant SiC, whisker reinforced aluminium oxide based 
ceramic insert SNGN 120712 T01 020 of grade CC670 was 
used for machining. The cutting speeds set for the cutting test 
were 200, 300 and 400 m/min at a constant feed rate of 0.1 
mm/rev. Cutting force measurements were conducted using a 
Kistler 9255B dynamometer.  

 

 
Figure 1: Experimental set-up for orthogonal machining. 

The chips and machined surface samples obtained by each 
cutting test were collected and processed for chip morphology 
(in terms of peak, valley and pitch) and microstructural 
analysis. The samples were polished and etched using Kalling’s 
reagent No 2. The optical analysis was conducted with the 
microscope LEICA DFC 320. The grain size has been 
measured as specified in “ASTM E112 – 12 Standard Test 
Methods for Determining Average Grain Size” referring to 
“Planimetric Procedure” [5]. The microhardness was 
measured by means of a Knoop indenter at a load of 50 g for 
15s on polished samples (four to five indentation for each 
different depth). 

3. Numerical Model 

Once obtained and defined all the results coming from the 
experiments, a finite element model was used to predict all the 
important variables of interest. A FE-based thermo-mechanical 
model formulation of the orthogonal cutting process has been 
developed using the commercial FE software SFTC Deform 
2D®. A plane-strain multi physics analysis was performed by 
using orthogonal assumption, the Update-Lagrangian code 
with remeshing technique was utilized. The workpiece was 

meshed with 5000 isoparametric quadrilateral elements (the 
elements size is nearly 160 μm) and a very fine elements size 
was defined near the cutting zone (the elements size is nearly 8 
μm), in order to obtain more accurate results and a better chip 
geometry, the tool was modelled as a rigid body. 

In the simulation the tool was totally deprived of all 
displacement, while the workpiece was able to move only 
along the X direction. The temperatures at the bottom and left 
sides of the workpiece as well as the top and right sides of the 
cutting tool were set to equal to the room temperature, Troom, 
which was assumed of 20 °C. The top and right sides of the 
workpiece as well as the left and bottom sides of the cutting 
tool were allowed to exchange heat with the environment. The 
global heat transfer coefficient, hint, at the tool-chip-workpiece 
interfaces was set equal to 105 kW/(m2K) according to the 
guidelines and literature results [6, 7]. 

In order to simulate as real as possible the orthogonal cutting 
process the mechanical and thermo-physical properties for the 
workpiece and the tool were defined taking into account the 
software database. In this work, Cockroft and Latham’s 
damage criterion [7] was considered in order to predict the chip 
segmentation during the orthogonal cutting. The equation 1 
shows this criterion:  

 

Where σ1 is the principal stress, ɛf is the effective strain and 
D is a material constant. The value of D has been calibrated 
comparing the numerical chip morphology with the ones 
evaluated through optical micrographs. 

As demonstrated by Özel [9], different friction definitions 
can lead to obtain different simulation outputs. For this reason, 
to properly simulate the cutting process, a hybrid friction 
model, based on sticking-sliding model was implemented and 
calibrated (μ = 0.8, m = 1 for 200 and 300 m/min; μ = 0.6, m = 
1 for 400 m/min).  

The material constitutive model and the different laws about 
grain size modification and hardness evolution have been 
implemented via user subrutine. The flow stress behaviour was 
defined using Johnson-Cook (J-C) model that describes the 
plastic deformation of materials at different ranges of strain, 
strain rate and temperature. Several J-C models with different 
set of coefficients are available in literature, according to 
Jafarian et al. [3]. In the current study the model used is as 
shown in Equation 2: 

 

where σ is the flow stress, ε is true strain,  is true strain-rate, 
 is reference true strain-rate and , , , are work, material 

melting and room temperature respectively (
. 

The recrystallized grain size d, due to the DRX phenomena, 
has been calculated considering the Equation 3 [10], 

          

where b and m are two material constants. This numerical 
expression depends on Zener-Hollomon parameter ( ). In the 
user routine, Zener-Hollomon equation proposed by Abbasi et 
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