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Abstract

In automated industrial production, the efficiency of robotic motions directly affects both the final throughput and the energy consumption. By

simulating and optimizing robot trajectories, cycle times and energy consumption can be lowered, or redundant robots can be detected. Here a

polynomial basis function trajectory parametrization is presented, which enables direct export to executable robot code, and reduces the number

of variables in the optimization problem. The algorithm finds time-optimal trajectories, while including collision avoidance and fulfilling joint,

velocity and acceleration limitations. Applied torques are used as an approximation of the energy consumption to analyse the smooth trajectories,

and successful tests show potential reductions of 10% for a standard industrial robot stud welding station.
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1. Introduction

In manufacturing industries using industrial robots and hav-

ing a high level of automation, e.g. the automotive industry, the

setup of an assembly line can be a highly complex task. It has to

be performed every time a new product is to be produced, and

when changes are made to the production line. By automating

as much as possible of the setup phase, new products can come

faster into production, and factory down-time can be reduced.

Using optimization, the cycle times of the robots in each work

station can be lowered, and there is an opportunity to also re-

duce the energy consumed.

Both in academia and in industry, the problem of simplify-

ing the generation of assembly line robot code [1], and creating

flexible production lines [2] has received a lot of attention. State

of the art methods of today are helping process engineers find-

ing short and fast robot trajectories, solving high dimensional

path planning [3,4], scheduling [5,6] and workload distribution

[7] problems. In academia more robust and effective algorithms

are being developed [8].

The workflow in industry can still be further improved by

improving the trajectories and removing any manual steps re-

quired. An example of such manual step was addressed in paper

[9], where the goal was to remove the manual task of choosing

zone radii for a given piecewise linear trajectory with via points.

The problem was set up using variables that can be used directly

as parameters in the set of available robot controller functions,

which makes it possible to directly export the solutions to robot

code. Only part of the available variable freedom was used in

the optimization, since the initial via points were fixated and

the only parameters that affected the geometrical shape were

the zone radii.

The contribution of this work is to further improve the so-

lutions by using non-fixated via points, giving the optimization

algorithm a larger search space. This is achieved by reparame-

terizing the problem using piecewise polynomial functions, im-

proving the robustness of the trajectory parametrization. The

limited number of control variables available as robot controller

commands is still used, so that solutions can be directly ex-

ported to robot code. An approximation of the energy con-

sumed by the robot is also used to study the potential of offline

energy optimization of robot trajectories.

2. Method

The method and optimization algorithm presented in this pa-

per is a development and reformulation of the work presented

in Gleeson et al.[9], which in turn is largely based on the ideas

presented in Björkenstam et al.[10]. Summarizing the contin-
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uous problem formulation in general terms, we have an opti-

mal control problem (1) of finding the control signal u, which

minimizes the cost functional J, composed of initial and final

costs Φ, as well as running costs described by the Lagrangian

L. Furthermore, the control and state should fulfill dynamic

constraints (1b), as well as equality (1c) and inequality (1d)

constraints.

min
u

J = Φ(x(ta), ta, x(tb), tb) +

∫ tb

ta
L(x(t), u(t), t)dt (1a)

such that ẋ(t) = f (x(t), u(t), t) (1b)

g(x(t), u(t), t) ≥ 0 (1c)

H(x(ta), ta, x(tb), tb) = 0 (1d)

for t ∈ [ta, tb].

The discretization method and trajectory parametrization

used in [9] is also used here, but the problem is reformulated

to decrease the number of variables and make the problem eas-

ier for the optimization algorithm. Since an interior point algo-

rithm, the Ipopt solver developed by Wächter and Biegler[11],

is used to solve the resulting optimization problem, a feasible

initial guess will in general reduce the number of steps and the

time it takes to convergence to an optimal solution. The vari-

ables in the new formulation are more physical and easier to use

when an initial feasible point is to be set up. The initial point

makes use of the solution given by the path planning algorithm

developed by Bohlin and Kavraki[4], which is a piecewise lin-

ear collision free trajectory.

The benefit of using this trajectory parametrization is that

the reduced convergence issues make it possible to relax the

constraints on the via points and allow the optimizer to use a

larger part of the search space. With this increased flexibility

comes also the possibility of considering other objective func-

tions. Time optimization is used here, retaining the correspon-

dence to the trajectories produced by the robot controllers of

today. An energy consumption model is used to compare the

solutions to each other and give an indication of how large the

potential is for energy reductions. To include energy optimiza-

tion would require an outer optimization loop, and this will be

the focus of future work. Still, optimizing with respect to time

will smooth the trajectory, giving noticeable energy reduction.

2.1. Parametrizing the trajectory

To be able to generate robot code for a specific trajectory,

a number of variables will have to be defined to specify the

robot path. The overall structure of a robot path is defined by

its initial point qstart, final point qend and via points it should

reach between them. These points are vectors of joint values,

with typically six joints for a standard industrial robot. The via

point joint vectors are denoted qmid as they define the midpoint

of a via point zone. For each via point, a zone radius defines an

area where the robot is allowed to deviate from the otherwise

piecewise linear path, smoothing out sharp corners and making

it possible to maintain a velocity through the transition between

linear segments.

A simplified sketch of a robot trajectory in joint space can

be seen in Fig. 1 along with some notations used to describe

Spline segment
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qstart
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Fig. 1: Notations for linear and spline segments along the trajectory. The

parametrization parameters, sk,i define N positions in each segment.

(a) Linear trajectory
(b) Trajectory with via point zones.

Fig. 2: The two figures show the trajectory and corresponding polynomials for

a linear trajectory and a spline trajectory defined by via point zones. For the

spline trajectory the corresponding polynomials of each via point is non zero

within neighbouring via point zones.

the variables and different parts of the trajectory. Each seg-

ment is parametrized by a parameter in a unit length inter-

val sk,i ∈ [k, k + 1]. For the seven segments of the trajectory

k ∈ {0, ..., 6} seen in the figure, variables are specifically shown

for the spline segment kS = 1 and the linear segment kL = 4.

The shape of robot trajectories used here is the same as was

used in [9], which have been found to correspond very well

to the interpolated joint trajectories used by ABB robot con-

trollers. Similar trajectories are also used by other industrial

robot manufacturers (e.g. KUKA) even if there are minor dif-

ferences.

In [9], the parametrization of the trajectory was divided into

linear phases and spline phases, and the starting point and end

point of each phase had to be defined and linked to the neigh-

bouring phases. Points along the trajectory within each phase

are then defined using these starting points and end points, as

well as the via points of the spline phases. But as previously

stated, it is only the via points and zone sizes that define the

shape of the path. Here we instead parameterize the trajectory

directly from these variables without explicitly defining the co-

ordinates of the transitions between linear segment and spline

segment. In order to do this we have to specify how each via

point affects the position of points along the trajectory by find-

ing and composing the polynomials that make up the trajectory.

The parametrization of the trajectory will then consist of a sum-

mation over via point-vectors qi and corresponding polynomial

functions pi:

q(s) =
∑

i

qi pi. (2)

The polynomial pi(s, rA, rB, �) will be a function of the trajec-

tory parameter s, the zone sizes rA and rB, and the distance
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