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Abstract

Assembly represents a significant fraction of overall manufacturing time and total manufacturing cost in the automotive industry. With increasing 
product complexity and variety, humans remain a cost effective solution to meet the needs of flexible manufacturing systems. This element
necessitates a better understanding of the human role in manufacturing complexity. Presented herein is a framework for enumerating assembly 
variables correlated with the potential for quality defects, presented in the design, process, and human factors domain. A case study is offered 
that illustrates a method to identify variables and their effect on assembly quality for a manual assembly process.
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1. Introduction

Automotive manufacturing industries comprise many 
diverse and critical processes that have continually become 
more complex due to decreasing product life cycles and 
increased demand for quality and product variety. Assembly, 
which is a significant portion of automotive manufacturing, is 
a crucial part of the automotive production process and greatly 
contributes to the cost and quality of the final product. Using 
the BMW 7 Series as an example, the projected number of 
variants of this single product line is 1017 [1]. The increased 
complexity and variety of modern assembly lines and vehicles 
has created new avenues for the introduction of assembly 
defects but has also left many opportunities for constant 
improvement and rapid progress. 

Assembly activities are very costly and time intensive, on 
average accounting for 40% of product cost and up to 50% of 
total manufacturing cost [2, 3]. With such a large impact on the 
cost of a product it is easily seen how important reducing 
defects is to the success of an assembled product. This is 
especially true in automotive assembly where single defects can 
result in the loss of thousands of dollars through rework or the

scrapping of entire vehicles and with frequently changing 
products, the potential for costly defects is rapidly increasing.

In the automotive market, manufacturer quality is a key 
factor in a customer’s vehicle purchasing decision in part due 
to there being many alternatives for them to choose from. 
During the purchasing decision, a customer will typically 
research the defect rates of vehicles to aid in their decision. One 
source of defect data that is used is J.D. Powers, who measure 
the number of defects per 100 vehicles. Integrity of electrical 
connectors, fit and finish of body panels, and paint quality are 
some of their most emphasized defect categories. Having easily 
accessible defect data available to consumers has forced 
automotive manufacturers to increase their internal quality 
initiatives and adopt new practices in the mitigation of 
assembly defects. This is especially true in manual assembly 
where Vineyard [5], Shibata [6], and Su et al. [7] found that up 
to 40% of total defects resulted from operator error and that 
these defects are not always obvious.

Research into defining strategies for characterizing 
assembly complexity has shown a strong relationship with final 
product quality. The following is a brief review of these models 
and results.
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Nomenclature

a Constant
b Constant
C Constant
Cd Coefficient of design complexity
Ch Coefficient of human factors complexity
Cp Coefficient of process complexity
Dac Component design variable
Dad Assembly design variable
Dfd Feature design variable
Di Ease of assembly of workstation i
Dmc Material design variable
H0 Null hypothesis
H1 Alternative hypothesis

Hcl
Cognitive load variable (probability of choosing 
correct part)

Hef Ergonomics variable
Htr Training/Experience variable
Hwe Work environment variable
K Constant
k0 Empirical process constant
k1,2,3 Empirical constants

KD
Arbitrary coefficient for calibration with process 
based complexity

Nai Number of job elements in workstation i
Pas Assembly sequence variable
Pnt Number of tasks in takt variable
Ptf Tooling/Fixture design variable
Ptu Assembly takt utilization variable
Pvt Assembly time variation variable
SSTij Time spent on job element j in workstation i
t0 Threshold assembly time
TAT Total assembly time for the entire product
TOP Total number of assembly operations

1…n Empirical constants

1…n Empirical constants

1…n Empirical constants

s- Average of the low (-)

s+ Average of the high (+)

2. Literature Review

2.1. The Hinckley Model

Hinckley [8], who based his data on semiconductors for 
home audio products, found that defect per unit (DPU) was 
positively correlated with total assembly time and negatively 
correlated with the number of assembly operations. He defined 
an assembly complexity factor as:= × (1)

The threshold assembly time was included in order to 
calibrate the relationship between the total assembly time and 
the total number of assembly operations. The threshold 

assembly time was defined as the time required to perform the 
simplest assembly operations. Hinckley showed that the 
complexity factor and defect rate showed a positive linear 
correlation on a log-log scale or:log = × log log (2)= (3)

2.2. Shibata Model

Shibata [6] studied the Hinckley model with the assembly 
of Sony’s compact disc players and found that the Hinckley 
model did not consider assembly design factors nor could it 
evaluate a specific workstation in an overall assembly line. He 
proposed that a prediction model centered on process and 
design based complexity at the workstation level could 
improve on the earlier work. Shibata also used Sony standard 
time, which is a well-known estimation of the standard 
processing time for electronics, to determine assembly time. 
Similar to the Hinckley model, the process based complexity 
factor ( ) was defined as:

= × (4)

Shibata then described a similar correlation between the 
process based complexity factor and DPU (5) on a log-log 
scale: log = × log log (5)= ( )

(6)

Shibata defined a design based complexity factor (7) and
then correlated it and DPU (8-9) on a log-log scale:

= (7)log = × log + log (8)= × ( ) (9)

According to Mendenhall and Sincich [9], adding 
independent variables to the regression function will help to 
improve the accuracy and stability. Using this, Shibata derived 
a bivariate prediction model by combining (5) and (8):log = × log + × log + (10)
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