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Abstract 

A module is a set of components with interfaces selected in order to help designers address ilities or non functional system 
requirements. Consequently, the boundaries of a module do not necessarily coincide with those dictated by functional 
decomposition. Modularization usually makes the architecture more complex due to additional interfaces and redundancies that 
have negative consequences on system performance. As a result, modularization is accompanied by a trade-off between non
functional and functional requirements. Additionally the system lifecycle consists of several phases, each characterized by 
different activities and goals. Systems may benefit from different modular architectures in the different lifecycle phases. This
paper presents a dynamic modular architecture methodology, where the modular architecture changes over the different product 
lifecycle phases. An example of a relatively simple mechanical system - a bicycle – is presented to illustrate the implementation 
of the methodology.
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1. Introduction 

Decomposition of a system into lower-level structures based 
on its functional requirements is a common tool in systems 
design and development, especially for complex systems. 
Decomposition and modularization are not necessarily 
identical [1], and the major difference between the two terms 
is that a system’s functional decomposition is often related to 
engineering requirements, while modularization is undertaken 
in order to accommodate the desired system ilities, which are 
defined as non-functional requirements. Ilities are used for 
appraising the entire system at specific phases and from a 
specific viewpoint over the system’s lifecycle, rather than 
satisfying the functional requirements of specific elements in 
the system. Ilities usually add beneficial or even luxurious 
features to the essential functional requirement of the system. 
As a result, the functional requirements affect the system’s 
functional structure, and ilities are accommodated by the 

system’s modular architecture. Modular design is commonly 
implemented as part of the system design [2,3,4] for creating 
architecture that exhibits ilities, in addition to the required 
operational features.  
Many methods have been suggested for system 
modularization. The Group Technology (GT) methods 
[5,6,7,8] group products, machines, tools, and manufacturing 
processes into manufacturing families (cells). The GT 
methods are based on common features of the products (e.g. 
geometries, materials, shapes) and their manufacturing 
processes. The outcome of the GT methods is a cellular 
manufacturing system that results in optimal flow and 
increased efficiency. A liaison network that represents the 
functional, as well as non-functional relations between 
system’s components, is another common tool in the design of 
modular architectures [9, 10]. Liaison networks are based on 
nodes that represent the system’s elements and arcs that 
represent the level of coupling and the structural properties 
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between the system’s elements [11]. While liaison networks 
have limited capabilities in identifying indirect relations of 
complex system elements [12], Design Structure Matrices 
(DSMs) and Multiple Domain Matrices (MDMs) can identify 
these hidden structures in complex systems. Various 
clustering algorithms are used in DSMs and MDMs in order 
to group elements into modules, using cost functions which 
are based on the system’s objectives.  
Each phase in the system’s lifecycle is characterized by 
different functional requirements, as well as non-functional 
ilities [13,14]. Unfortunately, modularity and functionality 
don’t always have a positive relationship. In fact, modularity 
may have adverse effects on functionality as illustrated in Fig. 
1. The system’s elements are initially divided into three 
clusters (subsystems) according to functional and logical 
decomposition at the operation phase. The elements within 
each cluster have strong connections between them (shown by 
the solid connection lines) with looser or no connections with 
elements in the other subsystems (shown by the thinner 
connecting lines). Ideally, the connections between clusters 
are weak such that they can be easily disconnected from other 
clusters. However, the modular architecture that is based on 
the system’s ilities may constitute a different structure that, in 
some instances, may contradict the functional structure during 
the operation phase. 

Fig. 1.  Changes of modular configuration in system’s lifecycle 

In this paper we discuss the design of system modularization 
given the differences between the system’s functional 
structure and the architecture driven by the system’s ilities. A 
dynamic modularization concept is proposed. The dynamic 
modularization considers the system’s structure based on 
functional requirements and non-functional illities. Newcomb 
et al. [15] present two measures for analysing modular 
architectures in what they call “lifecycle viewpoints.” The 
measures consider the differences between the components of 
various modules and the interdependencies between the 
clusters. Modularity is determined by the weighted sum of the 
two measures. Alizon et al. [16] analyse product family 
design in terms of the uniqueness, varieties, and 
commonalities of modules in family products. The objective 
is to determine common features among all modules. These 
features can then be used in a large range of products from the 
same family.  
The concept proposed in this paper considers the variance 
between the modular structures resulted from functional and 
non-functional considerations through the lifecycle phases. 
The outcome of the proposed model is a numerical value that 
indicates the clustering cost of a particular architecture, given 
the interdependencies of the elements in the functional 
structure and the modularization requirements as derived from 
the system’s ilities.  

2. Problem  formulation 

Consider a system that consists of n elements. A square 
matrix MF (n×n) also known as the functional DSM (we 
refer to this matrix as DSMF), that maps the interactions of the 
system’s elements according to the functional requirements. A 
numerical value mF(i,j) represents the level of interaction 
between element i and element j (larger values represent 
stronger interaction or dependency between the elements). A 
similar procedure is performed for the construction of the 
system’s ilities DSM – MI (n×n) (we refer to this matrix as 
DSMI) that consists of the same n elements as in the 
functional DSMF. Once the two DSMs are constructed, a 
clustering procedure is performed independently on each 
matrix to generate groups of elements that have strong 
internal interactions, and minimal or no interactions and 
dependencies between the groups. As mentioned, many 
clustering algorithms have been proposed over the past 50 
years. Early clustering algorithms originally developed for 
Group Technology use matrix permutations of rows and 
columns. Other algorithms use techniques based on versatile 
objective functions. Zakarian [17] proposes a model for non-
binary as well as binary matrices that considers interactions 
that are categorized as “bottlenecks”. Bottleneck interactions 
are outside the clusters, representing interactions or 
dependencies between elements that belong to different 
clusters. The objective is to minimize the weights of the 
bottlenecked interactions by reorganizing the elements related 
to these bottlenecks. The efficiency of the clustering process 
is measured by the summation of all the bottleneck 
interactions. The algorithm starts with n clusters, each 
containing a single element (with maximal bottleneck 
interactions) resulting in the worst clustering cost. As the 
algorithm proceeds, the number of clusters is reduced and the 
dimension of the clusters (number of elements within the 
clusters) increases. The algorithm continues to extend the 
clusters until no bottleneck interactions remain. In an “ideal” 
system, the outcomes are clusters with closely related 
elements and no bottleneck connections. If no “ideal” 
clustering is found, the algorithm continues until eventually it 
constructs one large cluster that consists of all elements in the 
system. While mathematically the latter case is acceptable (as 
there are no bottleneck interactions and the cost is zero), this 
is usually not a feasible solution. There is a need to define a 
modified objective function that considers, in addition to the 
the bottleneck interfaces, the number of the clusters and their 
size. For example, consider the following objective function:  

   (1) 
  (2) 
  (3) 

where  - total clustering cost 
 - internal connection within a cluster 

  -  external connection (bottleneck connections) 
 - internal cost of cluster i

 - external cost 
 - dimension (size) of cluster i

 - number of elements in the entire system 
 - penalty factor  

Operation

Ilities
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