
 Procedia CIRP 48 (2016) 271 – 276

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 23rd CIRP Conference on Life Cycle Engineering
doi: 10.1016/j.procir.2016.03.037

ScienceDirect

23rd CIRP Conference on Life Cycle Engineering

Dynamic modular architecture for product lifecycle

 Shraga Shoval, Li Qiao, Mahmoud Efatmaneshnik and Michael Ryan

Capability Systems Centre, School of Engineering and Information Technology (SEIT)
University of New South Wales Canberra

CANBERRA 2610, Australia

 Corresponding author. Tel.: +61 (2) 6268 9566; E-mail address: s.shoval@adfa.edu.au

Abstract

A module is a set of components with interfaces selected in order to help designers address ilities or non functional system
requirements. Consequently, the boundaries of a module do not necessarily coincide with those dictated by functional
decomposition. Modularization usually makes the architecture more complex due to additional interfaces and redundancies that
have negative consequences on system performance. As a result, modularization is accompanied by a trade-off between non
functional and functional requirements. Additionally the system lifecycle consists of several phases, each characterized by
different activities and goals. Systems may benefit from different modular architectures in the different lifecycle phases. This
paper presents a dynamic modular architecture methodology, where the modular architecture changes over the different product
lifecycle phases. An example of a relatively simple mechanical system - a bicycle – is presented to illustrate the implementation
of the methodology.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the scientific committee of the 23rd CIRP Conference on Life Cycle
Engineering.

Keywords: Modularization; System lifecycle; Design Structure Matrix; Clustering;

1. Introduction

Decomposition of a system into lower-level structures based
on its functional requirements is a common tool in systems
design and development, especially for complex systems.
Decomposition and modularization are not necessarily
identical [1], and the major difference between the two terms
is that a system’s functional decomposition is often related to
engineering requirements, while modularization is undertaken
in order to accommodate the desired system ilities, which are
defined as non-functional requirements. Ilities are used for
appraising the entire system at specific phases and from a
specific viewpoint over the system’s lifecycle, rather than
satisfying the functional requirements of specific elements in
the system. Ilities usually add beneficial or even luxurious
features to the essential functional requirement of the system.
As a result, the functional requirements affect the system’s
functional structure, and ilities are accommodated by the

system’s modular architecture. Modular design is commonly
implemented as part of the system design [2,3,4] for creating
architecture that exhibits ilities, in addition to the required
operational features.
Many methods have been suggested for system
modularization. The Group Technology (GT) methods
[5,6,7,8] group products, machines, tools, and manufacturing
processes into manufacturing families (cells). The GT
methods are based on common features of the products (e.g.
geometries, materials, shapes) and their manufacturing
processes. The outcome of the GT methods is a cellular
manufacturing system that results in optimal flow and
increased efficiency. A liaison network that represents the
functional, as well as non-functional relations between
system’s components, is another common tool in the design of
modular architectures [9, 10]. Liaison networks are based on
nodes that represent the system’s elements and arcs that
represent the level of coupling and the structural properties

© 2016 The Authors. Published by Elsevier B.V This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 23rd CIRP Conference on Life Cycle Engineering

272 Shraga Shoval et al. / Procedia CIRP 48 (2016) 271 – 276

between the system’s elements [11]. While liaison networks
have limited capabilities in identifying indirect relations of
complex system elements [12], Design Structure Matrices
(DSMs) and Multiple Domain Matrices (MDMs) can identify
these hidden structures in complex systems. Various
clustering algorithms are used in DSMs and MDMs in order
to group elements into modules, using cost functions which
are based on the system’s objectives.
Each phase in the system’s lifecycle is characterized by
different functional requirements, as well as non-functional
ilities [13,14]. Unfortunately, modularity and functionality
don’t always have a positive relationship. In fact, modularity
may have adverse effects on functionality as illustrated in Fig.
1. The system’s elements are initially divided into three
clusters (subsystems) according to functional and logical
decomposition at the operation phase. The elements within
each cluster have strong connections between them (shown by
the solid connection lines) with looser or no connections with
elements in the other subsystems (shown by the thinner
connecting lines). Ideally, the connections between clusters
are weak such that they can be easily disconnected from other
clusters. However, the modular architecture that is based on
the system’s ilities may constitute a different structure that, in
some instances, may contradict the functional structure during
the operation phase.

Fig. 1. Changes of modular configuration in system’s lifecycle

In this paper we discuss the design of system modularization
given the differences between the system’s functional
structure and the architecture driven by the system’s ilities. A
dynamic modularization concept is proposed. The dynamic
modularization considers the system’s structure based on
functional requirements and non-functional illities. Newcomb
et al. [15] present two measures for analysing modular
architectures in what they call “lifecycle viewpoints.” The
measures consider the differences between the components of
various modules and the interdependencies between the
clusters. Modularity is determined by the weighted sum of the
two measures. Alizon et al. [16] analyse product family
design in terms of the uniqueness, varieties, and
commonalities of modules in family products. The objective
is to determine common features among all modules. These
features can then be used in a large range of products from the
same family.
The concept proposed in this paper considers the variance
between the modular structures resulted from functional and
non-functional considerations through the lifecycle phases.
The outcome of the proposed model is a numerical value that
indicates the clustering cost of a particular architecture, given
the interdependencies of the elements in the functional
structure and the modularization requirements as derived from
the system’s ilities.

2. Problem formulation

Consider a system that consists of n elements. A square
matrix MF (n×n) also known as the functional DSM (we
refer to this matrix as DSMF), that maps the interactions of the
system’s elements according to the functional requirements. A
numerical value mF(i,j) represents the level of interaction
between element i and element j (larger values represent
stronger interaction or dependency between the elements). A
similar procedure is performed for the construction of the
system’s ilities DSM – MI (n×n) (we refer to this matrix as
DSMI) that consists of the same n elements as in the
functional DSMF. Once the two DSMs are constructed, a
clustering procedure is performed independently on each
matrix to generate groups of elements that have strong
internal interactions, and minimal or no interactions and
dependencies between the groups. As mentioned, many
clustering algorithms have been proposed over the past 50
years. Early clustering algorithms originally developed for
Group Technology use matrix permutations of rows and
columns. Other algorithms use techniques based on versatile
objective functions. Zakarian [17] proposes a model for non-
binary as well as binary matrices that considers interactions
that are categorized as “bottlenecks”. Bottleneck interactions
are outside the clusters, representing interactions or
dependencies between elements that belong to different
clusters. The objective is to minimize the weights of the
bottlenecked interactions by reorganizing the elements related
to these bottlenecks. The efficiency of the clustering process
is measured by the summation of all the bottleneck
interactions. The algorithm starts with n clusters, each
containing a single element (with maximal bottleneck
interactions) resulting in the worst clustering cost. As the
algorithm proceeds, the number of clusters is reduced and the
dimension of the clusters (number of elements within the
clusters) increases. The algorithm continues to extend the
clusters until no bottleneck interactions remain. In an “ideal”
system, the outcomes are clusters with closely related
elements and no bottleneck connections. If no “ideal”
clustering is found, the algorithm continues until eventually it
constructs one large cluster that consists of all elements in the
system. While mathematically the latter case is acceptable (as
there are no bottleneck interactions and the cost is zero), this
is usually not a feasible solution. There is a need to define a
modified objective function that considers, in addition to the
the bottleneck interfaces, the number of the clusters and their
size. For example, consider the following objective function:

 (1)
 (2)
 (3)

where - total clustering cost
 - internal connection within a cluster

 - external connection (bottleneck connections)
 - internal cost of cluster i

 - external cost
 - dimension (size) of cluster i

 - number of elements in the entire system
 - penalty factor

Operation

Ilities

321 4 5 6 7 8 9

4 7 93 8 21 5 6

Download	English	Version:

https://daneshyari.com/en/article/1698682

Download	Persian	Version:

https://daneshyari.com/article/1698682

Daneshyari.com

https://daneshyari.com/en/article/1698682
https://daneshyari.com/article/1698682
https://daneshyari.com/

