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Abstract 

First, we present an efficient algorithm for establishing planar datums that is based on a constrained minimization search based on the L2 norm 
after forming a convex surface from sampled points. Visualized by Gauss maps, we prove that the problem reduces to a minimization search 
where the global minimum is localized about the minimizing facet. Second, we highlight advantages of this planar datum, including the major 
advantage that the datum planes have full mechanical contact with the datum features in stable cases yet are automatically balanced for rocking 
conditions. These advantages make this definition appealing for standardization. 
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1. Introduction 

In the world of Geometric Dimensioning and Tolerancing 
(GD&T), datums are used extensively to locate and orient 
tolerance zones [1-7]. Datum planes in particular are common 
and are established by mating planes to imperfect datum 
features on parts during inspection [3] (see Fig. 1). Distances 
and orientations on drawings and three-dimensional models are 
established from these datum planes, relative to which tolerance 
zones are located and oriented. Additional details of the 
importance and prevalence of datum planes in specifications are 
given in [8] and will not be revisited in this paper.  

 

 
Fig. 1. Deriving a datum plane from a datum feature. 

 
Given that datum planes are ubiquitous, it might be 

surprising that—short of standardization—there are several 
different yet reasonable approaches by which a datum plane can 
be established from a datum feature [9]. Furthermore, the 
International Organization for Standardization (ISO) and the 

American Society for Mechanical Engineering (ASME) are 
actively working to establish default datum plane definitions.  
In [10] we introduced a definition for a planar datum that 
naturally combines a correspondence to physical, surface plate 
mating (i.e., “high points”) but with automatic balancing in the 
case of unstable, rocking conditions. The datum plane 
definition is based on a constrained total least-squares criterion 
(abbreviated here as L2C), which is explored in this paper. This 
should not be confused with an unconstrained total least-
squares fit that is shifted out of the material. 

Given a set of points sampled on a datum feature, the two 
major steps in establishing the L2C datum plane are as follows: 

1) Compute the “lower” convex envelope of those points. 
This is the portion of the convex hull that lies on the 
nonmaterial side of the datum feature. In 3D, this 
convex envelope consists of a union of non-overlapping 
triangles, while in 2D it is a union of line segments 
creating a piecewise linear curve. 

2) Find the plane, constrained to lie on the nonmaterial side 
of the computed convex surface that minimizes the 
integral of squared distances from that surface, 
namely , where S is the convex surface and 
d is the distance from a point p on the surface to the 
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plane, P. If P contains x and has normal a, then 
.  

Concentrating on the second step, we find the need to 
integrate over a set of triangles (or line segments in 2D). For 
each triangle (or line segment) this integral can be replaced by 
the Simpson’s rule approximation (see Fig. 2)  [11] (which we 
will see is actually exact in our case). 

 

 
Fig. 2. The locations and weights for function evaluations for numerical 

integration using Simpson’s rule over an interval and triangle. 

 
Simpson’s rule for integrating over an interval (or triangle 

for the 3D case) depends only on the weighted values of the 
function at the endpoints (or vertices in 3D) and at the centroid. 
Over an interval, Simpson’s rule is given by: 

 

and for integrating over a triangle, , as shown in Fig. 2,  

 

Because Simpson’s rule [11] is exact for functions of degree 
2 (our case), we note that in the two formulas just above, these 
are exact calculations of the integrals and not mere 
approximations. The framing of this problem as a weighted 
sum-of-squares now allows us to solve the objective function 
as a singular value decomposition (SVD) problem. See [12] for 
a general treatment of using the SVD as a method for 
minimizing the total least-squares problem, and [13] for an 
application of it applied to planar fitting with weighted points 
(essential to be physically correct), which is our case here. 

For the 3D case, let a S be a lower convex surface be made 
up of N triangles, T1, T2, …,TN, where Ti has vertices 
(xiA, yiA, ziA), (xiB, yiB, ziB), and (xiC, yiC, ziC) and where each 
triangle has centroid  and area . If P is a candidate 
plane and, for each triangle,  are the distances 
between P and the vertices and  is the distance from P to the 
triangle’s centroid. Then, the L2C objective function to be 
minimized is: 

                    (1) 

For the 2D case, where the convex surface is comprised of 
 line segments, each having length Li , endpoints (xi, yi), 

and (xi+1, yi+1),  being the distance from P to (xi, yi),  and  
is the distance from P to the line segment’s midpoint, we then 
have the objective function being  

                      (2) 

In [10] we proved that the (2D) objective function for any 
candidate plane P is given by the elegant, efficient formula:  

 
                    (3a) 

or equivalently 
                           (3b) 

        
where (see Fig. 3)  is the distance from the plane P to the 
centroid, and  are the singular values from the SVD of the 
matrix M below, and  represents the angle P makes with the 
singular vector corresponding to the smallest singular value, 

. Eqs. (3a) and (3b) are equivalent, where 
 is the unit normal to the candidate plane when 

expressed as the dot product of that normal with each of the two 
singular vectors (e.g.,  is the dot product of the unit normal to 
the plane with the first singular vector). The  matrix, M, 
that is used in the SVD comes from the elements the Simpson’s 
rule approximation (see [10] for more detail), repeated for each 
of the N line segments: 

 

(The construction of M is done with the data translated so the 
centroid is at the origin. This translation is not shown explicitly 
in the matrix for reasons of space.)  

 
Fig. 3. The objective function for any candidate datum can be found 

simply by knowing the angle θ and distance dc and using Eq. (3). 
 

Using Eq. (3) to compute the objective function means that 
the SVD has to be computed only once, and its result can be 
applied to any given candidate datum plane. This makes for a 
much more efficient minimization algorithm. 

What is fascinating about Eq. (3) is that the two terms on the 
left are exactly the objective function used in a traditional least-
squares minimization while the term on the right is the objective 
function in a constrained  fit [14, 15]. We will see that the 
objective function indeed does manifest itself as having the 
balancing property of the unconstrained least-squares and the 
full mechanical contact of the constrained  definition, which 
is what is desired. 

This can extend to 3D as well, since we showed that there is 
an extension of Simpson’s rule that applies to integration over 
a triangular region. For the 3D case, the objective function for 
any candidate plane P is given by the efficient formula: 
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