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Abstract 

The reduction of the scraps is fundamental to achieve goals of competitiveness. Some key parameters have a direct influence on any process 
and they need to be predicted and taken under control. 
This paper present an approach ) is to develop a robust monitoring solution of the ceramic shell manufacture that will be able to determine a 
significant reduction of the inclusion scraps (due the ceramic shell) of the superalloy components. The control will be obtained by processing 
data coming both from sensors and laboratory measured values. The sensor data come from the new equipment of the Europea Microfusioni 
Aerospaziali SpA (EMA) and have been tested and used to develop the EMA demonstrator within the EC FP7 Project on "Intelligent Fault 
Correction and self-Optimizing Manufacturing systems - IFaCOM". The sensor data will merge the data measured in the EMA laboratories and 
both the values will concur to create the sensor fusion pattern vector, which will be used to feed an automatic system for the prediction of the 
process parameters. The automatic system will be implemented using cognitive paradigms, in particular Artificial Neural Networks, that will 
combine both data. 
The first testing phase will predict the number of blades with inclusions. It will provide a first idea of the correlation between the input, as a 
matrix composed by the sensor fusion pattern vectors per each worked blade, and the outputs, as a vector of rejected blades on the total. 
Moreover, this work will be the basis to implement a predictive system to estimate which is the reference range of each working parameter. 
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1. Introduction 

Sensors are devices used to obtain information from the 
environment in which they operate. Information from a single 
sensor can be very limited; i.e., a radar information would be 
more complete if a vehicle could be identified and it would be 
more valuable if the shape of objects detected by the sonar 
could be elucidated. 

Measurements taken using single sources are not fully 
reliable and are very often incomplete due to the operating 
range and limitations, which characterize each sensor. 

The use of multiple sensors has numerous advantages over 
single sensor instruments. Because of the technical features 
which characterize each sensor, redundant and/or 
complementary observations about a measure can be made. 
The combination of this information can be used to generate a 

more complete picture of the environment than is currently 
obtainable with a single sensor. A multiple sensor device can 
include any instrument with several sensors of identical or 
similar types used to measure a physical quantity. 

The simultaneous use of similar sensors can be very 
advantageous when large areas need to be covered in a short 
time, or to assess the accuracy of a reading by comparing 
multiple outputs. 

The following benefits can be identified in the use of 
multiple sensor devices: 

• a downtime reduction and an increase in reliability; 
• complementary information; 
• a higher signal-to-noise ratio; 
• a reduction in measurement uncertainty; 
• a more complete picture of the environment. 
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All of these results in an overall increase in system 
performance. Information from multiple sources needs to be 
effectively combined in a coherent and efficient manner in 
order to compensate for their limitations and deficiencies. The 
disadvantages in the use of multiple sensor devices can be 
found in the increase of the system cost and the difficulties in 
managing a large amount of data. 

As the terminologies data fusion, data integration, 
multisensor integration, become more widely used in day-to-
day scientific publications, their meaning needs to be clarified. 
Waltz and Llinas [1], Hall [2], and Rothman and Denton [3] 
gave their views and definitions of what data fusion really is. 
In 1990, the US Department of Defense defined data fusion as 
a technology which involves the acquisition, integration, 
filtering, correlation and synthesis of useful data from diverse 
sources for the purposes of situation/environment assessment, 
planning, detecting, verifying, diagnosing problems, aiding 
tactical and strategic decisions, and improving systems 
performance and utility. This is a very complex definition 
oriented towards military applications rather than a general 
explanation of data fusion. In simple terms it can be 
summarized as the processing, interpretation and use of data 
from multiple sources. Data fusion is used in an important 
variety of topics and technologies. A general data fusion 
system model capable of handling various applications is very 
difficult, if not impossible, to design. As a consequence, 
various data fusion models can be found in the literature. 
General reviews on data fusion were presented in 1988 by 
Blackman [4], Schoes and Castore [5] and Luo and Kay [6] in 
1990 by Hackett and Shah [7] and in 1991 by Rothman and 
Denton [3] where different fusion technologies were 
described. 

1.1. EMA demo: user case expectations overview 

The main goal of the Europea Microfusioni Aerospaziali 
S.p.A. (EMA) is to develop a robust monitoring solution of 
the ceramic shell manufacture able to determine a significant 
reduction of the inclusion scraps (due the ceramic shell) of the 
superalloy components. 

The EMA demo is based on monitoring parameters to 
obtain the minimum number of scrapped blades. Such 
parameters are related to the liquid slurry and are monitored 
by means of traditional and new IFaCOM equipments. 
Specific interest is paid to some characteristic, such as slurry 
viscosity and temperature values, plate weight and slurry 
silica content: these measurement data are recorded, for 
further analysis [8]. 

To achieve some tangible results, consistent with the 
resources available within the EC FP7 Project on "Intelligent 
Fault Correction and self-Optimizing Manufacturing systems 
- IFaCOM", the investigation was restricted to the 
development of novel methods for robust control and analysis 
of the primary slurry and the development of specific control 
methods for the ceramic shell. 

The final goal of EMA-Demonstrator (DEMO) research is 
to optimize the process of ceramic shell manufacturing by 
means of a more robust control and data acquisition of the 
primary slurry parameters and quality characteristics of the 

shell, in order to reach a significant reduction of the 
components inclusion scraps. The DEMO was designed as an 
iteration process, which will lead to the end of the three 
iterations provided, to understand the robust range of the key 
parameters to use in order to minimize the content of 
inclusions in the superalloy components, using the new 
methods of measurement and control introduced during the 
project. 

The DEMO activity developed in the frame of the first 
production iteration was carried out by means of: 

 robust control of the industrial manufacturing of the 
ceramic shells of one aeronautical vane component on 
the company’s production line, using a focused 
monitoring of the primary slurry parameters and 
additional control of the ceramic shell quality that are 
not normally actuated during standard production 
cycles; 

 in-line and off-line data process acquisition (primary 
shell parameters, shell mechanical characteristics and 
inclusion scrap rate of the components) and storage in 
a dedicated database (DB) using specifically developed 
software (SW); 

 cognitive systems - Neural Networks (NNs) data 
analysis with the aim to find the correlations between 
the measured Key Process Variables and the Target 
Variable (output quality parameter) - inclusion scrap 
rate. 

1.2. EMA use case description 

During the dipping of the wax assembly models for the 
solid shell fabrication a better control of the properties and the 
behavior of the slurry is required, with respect to the pre-
IFaCOM situation. The purpose is to improve such control 
and to prevent the damaging influence on the occurrence of 
ceramic inclusions in the superalloy turbine vanes (final 
product). 

Furthermore, the activities will validate the developed 
feature vectors paying attention to the identification of 
defective products – scrap components due to ceramic 
inclusions. The assessment of the sensor fusion pattern vector 
will be carried out in terms of success rate in the identification 
of such defects. Cognitive systems, such as NN, will be used 
to understand, estimate, and predict the correlation between 
input features (vital characteristics of the primary slurry and 
mechanical properties of the developed ceramic shells) and 
output quality parameters (ceramic inclusions in the 
manufactured superalloy components) [9]. Practically, the 
sensor fusion feature vectors represent the input, while the 
output is the end-user given quality parameters identifying the 
final product quality in terms of number of inclusions per 
component and/or number of scrap components per ceramic 
inclusion. 

To establish a thorough control of the primary shell 
fabrication, the following vital parameters were monitored 
with the new IFaCOM equipments, as well as in the standard 
way (pre-IFaCOM) [10]: 

• Silica Content (wt%) measured with the new IFaCOM 
equipment XRF analyzer – primary slurry characteristic; 
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