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The experimentally known phenomenon of spontaneous transition from slow conductive to fast
penetrative (convective) burning in a confined gas-permeable explosive is discussed. A reduced quasi-
linear model, involving only the most essential physical ingredients, is formulated. A good qualitative
agreement between theoretical and experimental dependencies is obtained. Similar to the previously
studied case of an inert porous matrix filled with an explosive gas, the transition is triggered by a
localized autoignition in the extended resistance-induced preheat zone gradually formed ahead of the
advancing deflagration. The conventional concept of penetrative burning is re-examined.

© 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

A self-sustained wave of the exothermic chemical reaction
spreading through a homogeneous gaseous explosive is known to
occur either as a subsonic deflagration (driven by thermal conduc-
tivity) or by supersonic detonation (driven by adiabatic compres-
sion). In unconfined obstacle-free systems the concrete realization
of the specific propagation mode is controlled by the ignition con-
ditions. Normally, deflagrations are initiated by a mild energy dis-
charge, e.g. by a spark, while detonations are provoked by shock
waves via localized explosion. It is known however that in the
presence of obstacles or confinement (tube walls, porous matrix)
the initially formed deflagration undergoes slow acceleration, end-
ing up abruptly as a detonation. Apart from inducing hydrody-
namic disturbances, and thereby affecting the deflagration wave
speed, the obstacles also exert resistance to the gas flow causing
reduction of its momentum and local elevation of the pressure.
The gradual pileup of the pressure results in the formation of an
extended preheat zone ahead of the advancing flame. This slowly
proceeding development may ultimately end up as an adiabatic
explosion which abruptly converts the burning process from defla-
gration to detonation [1,2].

The outlined resistance-based concept of the deflagration-to-
detonation transition in gaseous systems is likely to be of relevance
also for understanding the transition from slow to fast burning oc-
curring in confined gas-permeable solid explosives/propellants. As
soon as the incipient flame penetrates into the interior of the ex-
plosive, pressure gradients develop due to the resistance to the gas
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flow in the interstices between the explosive particles. One thus
ends up with a situation very similar to that occurring in gaseous
systems.

Although the importance of hydraulic resistance for the transi-
tion in gas-permeable explosives has long been recognized [3–13],
its specific impact, to our knowledge, has not yet been fully un-
derstood. In particular, the mechanism responsible for the abrupt
transition from slow conductive to fast penetrative (convective)
burning has not been properly identified. Isolation of the transi-
tion mechanism is the main objective of this paper.

2. Formulation

For solid gas-permeable explosives the penetrative burning is
not, as a rule, a final equilibrium state but rather a transient stage
toward the ultimate supersonic detonation, involving compaction
of the explosive, collapse of its permeability, and compression of
the full-density (impermeable) explosive by the advancing shock.
To isolate the mechanism controlling the transition from conduc-
tive to penetrative burning the effect of compaction may be provi-
sionally ignored, as being of a different physical nature. As a result,
upon the transition the penetrative burning may become an equi-
librium state. Experimentally, some evidence of steady penetrative
burning has been observed by several investigators [14–16]. The
theoretical possibility of constant-speed penetrative burning has
long been shown by Kuo and Summerfield [4].

To simplify further analysis we assume that the explosive is
foam-like; that is, highly energetic with the porosity close to unity.
One therefore may consider the limit where the gas generation is
negligible but the effect of heat release is substantial. The conti-
nuity equation for the gaseous phase may then be written without
the mass-generation term. Practically, a high gasification rate is the
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principal function of many explosives. Yet, curiously enough, this
aspect is not crucial for the transition event and in the qualitative
physical analysis may well be ignored. For the same reason we
keep the conventional no-slip boundary condition for the gas flow
within the porous matrix and employ the classical Darcy’s law as
the momentum equation. As the equation of state a perfect gas law
is used. The gas and solid are assumed to be in thermal equilib-
rium, allowing utilization of a single-temperature description for
the two-phase medium. The reaction rate is specified as a one-
step zero-order Arrhenius kinetics converting the solid explosive
straightforwardly into the gaseous product. Upon its consumption
the solid explosive ceases to exert resistance to the gas flow—the
permeability of the system ascends to infinity. The current study
is focused on the subsonic propagation only. Moreover, we con-
sider the limit of zero-Mach-number, where the effects due to
dynamic compressibility are ignored. In this case the pressure in
the drag-free burned gas region becomes spatially uniform, though
time-dependent.

Apart from the neglect of gas production and volume-fraction
of the solid phase, the above premises are similar to those adopted
by Margolis in his ground-breaking theoretical exploration of the
convection-enhanced burning [10] (for its further developments
see Refs. [11–13]).

In the high porosity limit (φ � 1) the effective material proper-
ties of the gas–solid system are determined by the gaseous phase
only. The function of the solid phase is merely to provide the
source of energy and to induce hydraulic resistance. The set of gov-
erning equations may thus be written as follows.

Mass conservation for gaseous phase,

ρt + (ρu)x = 0. (1)

Momentum conservation (Darcy’s law),

ρu = −(K/ν)Px. (2)

Energy conservation,

cpρTt + cpρuTx = cp(ρDthTx)x + Pt + (1 − φ)Q W . (3)

Equation of state,

P = (cp − cv)ρT . (4)

Solid reactant conservation,

ρsCt = −W . (5)

Reaction rate,

W = AH(C)exp(−Ta/T ). (6)

Here T , P , C , ρ , u are the temperature, pressure, solid reactant
mass-fraction and flow velocity, respectively. ρs is the density of
the solid phase, cp , cv are specific heats, Dth, ν are thermal diffu-
sivity of the gaseous phase and its kinematic viscosity—all assumed
to be constant. A is the pre-exponent. Ta is the activation temper-
ature. H(C) is the Heaviside step-function,

H(C) = 1 at C > 0 and H(C) = 0 at C = 0. (7)

K is the permeability of the system, dependent on the reactant
mass-fraction, C . For simplicity we specify this dependency as

K = K0
(

H(C)
)−1

. (8)

That is, according to Eq. (2), ρu = −(K0/ν)Px at C > 0, and Px = 0
at C = 0. φ is the porosity of the system, which (in line with the
permeability) is specified as

φ = 1 + (φ0 − 1)H(C). (9)

That is, φ = φ0 at C > 0, and φ = 1 at C = 0.

As an additional simplification we adopt the quasi-linear
(small-heat-release) approximation where variations of temper-
ature, pressure and flow velocity are regarded as small and,
hence, the nonlinear effects are ignored everywhere but in the
reaction-rate and permeability terms, highly sensitive to even mi-
nor changes in temperature and the reactant’s mass-fraction. In
this formulation the problem becomes much more compact math-
ematically, without seemingly compromising crucial features of
the original fully nonlinear system. Thus we set, P = P0 + δP ,
T = T0 + δT , ρ = ρ0 + δρ , u = δu, where P0, T0, ρ0 correspond
to the initial state of the system prior to ignition. Upon partial
linearization, assuming δ-terms to be small, Eqs. (1)–(6) yield

(δρ)t + ρ0(δu)x = 0, (10)

ρ0(δu)t = −(K/ν)(δP )x, (11)

cpρ0(δT )t = cpρ0 Dth(δT )xx + (δP )t + (1 − φ)Q W , (12)

(δP ) = (cp − cv)ρ0(δT ) + (cp − cv)T0(δρ), (13)

ρsCt = −W , (14)

W = AH(C)exp
(−Ta/(T0 + δT )

)
. (15)

Here K and φ are defined by Eqs. (8), (9).

3. Nondimensionalization

For further discussion we introduce nondimensional variables
and parameters defined as

Θ = (δT )/(T∞ − T0)—scaled temperature,

Π = (δP )/(P∞ − P0)—scaled pressure,

Σ = P0(δρ)/ρ0(P∞ − P0)—scaled density,

U = (δu/u∞)—scaled flow velocity,

Φ = C/C∞—scaled solid reactant mass-fraction,

Ω = W /W∞—scaled reaction rate,

ξ = x/x∞, τ = t/t∞—scaled spatio-temporal coordinates,

κ = K/K∞—scaled permeability.

Here, T∞ = T0 + (1 − φ0)Q ρsC0/cvρ0 and P∞ = P0(T∞/T0) are
the final temperature and pressure of combustion products reached
upon the adiabatic homogeneous explosion. C0 is the reactant
mass-fraction prior to ignition. W∞ = (1 − γ −1)−1 A exp(−Ta/T+),
where γ = cp/cv , and T+ is the ‘ignition’ temperature defined by
the relation, T∞ − T+ = (1 − φ0)Q ρsC0/cpρ0, or T+ = T0 + (1 −
γ −1)(T∞ − T0).

The normalizing factor (1 − γ −1)−1 in W∞ keeps the scaled
velocity of the well-settled penetrative burning near unity (see
Fig. 2 and Eq. (40) below). t∞ = ρsC0/W∞ , x∞ = √

D pt∞ , u∞ =
x∞/t∞ , where D p = K0a2

0/γ is the pressure diffusivity, and a0 =√
γ (cp − cv)T0 is the speed of sound. β = (1 − σ)(Ta/T+) is the

Zeldovich number based on T+ with σ = T0/T∞ . ε = Dth/D p is
the ratio of thermal and pressure diffusivities. ε is often rather a
small number ensuring a marked disparity between the propaga-
tion velocities of conductive and penetrative modes. For example,
for a set of typical values: γ = 1.4, a0 = 350 ms−1, ν = Dth =
2.5 × 10−5 m2 s−1, K0 = 2.5 × 10−10 m2, one obtains ε � 10−5.

Introducing the above nondimensionalizations into Eqs. (10)–
(15) one ends up with the following set of scaled equations:

Πτ − Θτ + Uξ = 0, (Π − Θ = Σ), (16)

U = −κ(Φ)Πξ , κ(Φ) = (
H(Φ)

)−1
, (17)
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