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Abstract 

In tolerancing analysis area, a classical approach consists in handling sets of linear constraints. These sets of constraints 
characterize the boundaries of the relative displacements between two surfaces of the same workpiece or between two surfaces of 
two different parts, potentially in contact. The relative position between any two surfaces of a mechanism is determined by 
operations on these sets of constraints (Minkowski sum and intersection). A method for solving these operations is to model each 
set of constraints by a polytope, which by definition is a bounded intersection of many finitely closed half-spaces in some n . 
However, the intersection of half-spaces simulating geometric constraints or contact is generally not bounded. This is due to the 
degree of invariance of a surface and the degree of freedom of a joint characterizing theoretically unbounded displacement. This 
article introduces the concept of "cap" half-spaces to delimit sets of constraints in 6 . They are added to the operand set and in this 
way determining the relative position of two surfaces of a mechanical system is based solely on operations on operand polytopes 
generating a calculated polytope. By checking that a calculated polytope is included within a functional polytope the conformity of 
a mechanical system can be simulated with respect to a functional requirement. The addition of cap half-spaces to the operand sets 
will affect the topology of a calculated polytope. Hence it has to be possible to differentiate among all the facets of a calculated 
polytope between those that are generated by the cap half-spaces and the others generated by half-spaces that derive from geometric 
and contact constraints. This is essential in order to validate the geometric tolerances that ensure that a mechanical system is 
compliant in relation to a functional requirement. This article describes how to identify the facets generated by the cap half-spaces 
of a polytope resulting from a Minkowski sum or an intersection between two operand polytopes. 
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1. Introduction 

The aim of tolerancing analysis is to verify the 
mechanical system compliance with respect to functional 
requirements in terms of geometric specifications of 
constituent parts and contact specifications between 
parts potentially in contact.  

A geometric specification is defined by a set of 
constraints which characterizes all the possible positions 
of a real surface within a tolerance zone. A tolerance 
zone is a region bounded by a perfect geometry, offset 
from the nominal surface [1]. Similarly, a contact 
specification is defined by a set of constraints that 

characterizes all the relative positions between two 
surfaces of two distinct parts potentially in contact [2].  

In general, these sets of geometric constraints or 
contact constraints are operand sets that may be 
conformed to sets of half-spaces of 6 . Giordano 
showed that the relative position of two parts resulting 
from several potential contacts can be formalized by an 
intersection operation on sets of contact constraints [3]. 
Fleming established the correlation between cumulative 
defect limits on parts in contact and the Minkowski sum 
of finite sets of geometric constraints [2]. More 
generally, the relative position between two surfaces of a 
mechanical system is characterized by a set of half- 
spaces, determined by operations (intersection and 
Minkowski sum) on operand sets [4,5]. Each operand set 
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is a polyhedron of 6 . A polyhedron is an intersection 
of a finite number of closed half-spaces of 6 . We 
distinguish two types of polyhedron: a geometric 
polyhedron associated to geometric constraints and a 
contact polyhedron derived from contact constraints. In 
general, a polyhedron defined in geometric tolerancing is 
not bounded. Indeed, the displacements leaving globally 
invariant a surface and the displacements corresponding 
to the degrees of freedom of a joint are not limited by 
constraints. Minkowski sum of polyhedra can induce a 
prohibitive computational complexity. To overcome this 
problem, we have chosen to work only with polytopes. 
A polytope of 6  is a bounded polyhedron. Algorithms 
of Minkowski sums of polytopes dedicated to tolerance 
analysis where developed [6].  

This article describes how to identify the facets 
generated by the cap half-spaces of a polytope resulting 
from a Minkowski sum or an intersection between two 
operand polytopes.  

In the following, we limit ourselves to 6-dimension 
polyhedra and polytopes: the half-spaces arising from 
the geometric and contact constraints are linear 
inequalities in six variables: three rotation variables and 
three translation variables [4]. 

In the first part, some properties of polyhedra and 
polytopes are considered; the second part looks at 
determining the cap half-spaces which set boundaries to 
the half-space intersections resulting from geometric and 
contact constraints. 
The third and the fourth parts deal with the two methods 
of identifying the dependent facets of cap half-spaces in 
a summation and an intersection respectively. Finally, 
we will discuss on the main advantages of this method 
and some future developments will be presented.  
In this article, we put forward the following physical 
hypotheses: 

no form defect in the real surfaces, 
no local strain in surfaces in contact, 
no deformable parts. 

2. Preliminaries on polytopes 

2.1. Polyhedron, polytope, face 

A polyhedron is an intersection of finitely many 
closed half-spaces in n  (see Fig. 1(a)) [7,8]. This is the 

- description of a polyhedron [7]. We choose in this 
article, a set of m  half-spaces :n TH bx a x  
to define a polyhedron  according to (1).  
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Where 1 ,...,T T
ma a  are the rows of A  and 1,..., mb b  are 

the components of b . 

A - polytope is a bounded - polyhedron (see Fig. 
1(b)). A -d polytope is a polytope of dimension d in 
some n  ( d n). A 0-polytope is a vertex, a 1-polytope 
is an edge and a 2-polytope is a polygon. 

A hyper-plane H  is a support hyper-plane of  if: 

and HH (2)

A face F  of  is the intersection between  and 
one of its support hyper-planes. The faces of a d -
polytope  are convex sub-sets of dimension 

, 0 1k k d  [9, 10]. 
A face of dimension d  is denoted -d face. A 0-face 

is a vertex, a 1-face is an edge and a ( 1d )-face is a 
facet of . 

 

Fig. 1. (a) A 2-polyhedron 1  ; (b) a 2-polytope  2  

2.2. Dual cone, normal fan 

A cone is a non-empty set of vectors that, with any 
finite set of vectors, also contains all their linear 
combinations with nonnegative coefficients [7]. In 
particular, every cone contains the origin. For any 
arbitrary subset 1 ,..., n

dY y y , the cone associated 
to Y  is defined as [7]: 

1 1cone( ) , 0 . ... . , 0d d iY Y t y t y tt t (3)

Some examples of cones of dimensions 2 and 3 are 
given in [6,7].  

Every vertex v  of a polytope  has an associated 
primal and dual cone as: 

The primal cone is composed of sets of edges and 
facets associated to the vertex v . 
The dual (or normal) cone is constructed as : 
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