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Abstract 

This paper presents a mathematical model and an adaptation of the Strength Pareto Evolutionary Algorithm II (SPEA2) for the Mixed-Model 
Assembly Line balancing and equipment selection problem. The SPEA2 was enriched with a task and equipment reassignment procedure and 
aims at supporting the planners to find better solutions in the earliest phases of a production system planning project. 
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1. Introduction 

Nowadays, due to the current levels of globalization, 
competition and deregulation that have engendered a 
changeable, dynamic and uncertain global market with greater 
need for flexibility and responsiveness [1], the ability of a 
company to compete effectively is influenced to a large extent 
by its capacity to produce an increased number of customer 
based products in a timely manner [2]. Shorter product life 
cycles; high flexible, dynamic and efficient production 
systems are required, engendering an increased complexity in 
all factory domains. To handle this complexity, methods of 
Operations Research are often used to support the decision 
maker to plan flexible and optimal assembly lines. Assembly 
lines that allow a low cost production, reduced cycle times 
and accurate quality levels, can be classified into three 
variants: (i) the Single Model Line, designed to carry out a 
single product, (ii) the Mixed Model Line, designed to 
produce similar models of a product in sequence or batch and 
(iii) the Multi Model Line, designed to produce various 
similar or different models in large batches. Several standard 
scientific problems relating to these three variants have been 

formulated in the literature, such as the optimal process 
planning, facility layout, line balancing, buffer allocation, 
equipment selection, etc. [3]. While the Single and Multi 
Model Line are the least suited production systems for high 
variety demand scenarios, the Mixed Model Line is better 
appropriated to respond to these requirements of flexibility 
and efficiency. This paper deals with the resolution of a multi-
objective problem, namely with the line balancing problem 
and equipment selection problem, also called Assembly Line 
Design Problem, for a Mixed-Model-Line. While the line 
balancing problem is related to the decision problem of 
optimally partitioning or balancing the assembly tasks among 
stations, the equipment selection problem is associated to the 
decision problem of optimally selecting the equipment for 
each assembly task.  

In the next section, the basic concepts of multi-objective 
problems will be presented, followed by a state of the art in 
the field of the Assembly Line Design Problem, in which the 
weaknesses of the current available methods will be 
presented. Our efficient multi-objective optimization method 
will be presented in the last sections. 
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2. State of the Art 

2.1. Multi-Objective Optimization 

2.1.1. Basic Concepts and Terminology 
A multi-objective optimization problem (MOP) is a 

problem in which at least two objectives need to be 
simultaneously optimized. In mathematical terms, a MOP can 
be formulated as follows: 

  (1)  
s.t.   (2)  

  (3)  

Where denotes the number of objective functions,  
is the number of inequality constraints, and  the number of 
equality constraints.  

Due to the multi-objective nature of most real-life 
problems (e.g. in finance, scheduling, engineering design and 
medical treatment [4]), MOPs have been a rapidly growing 
area of research and application. Generally, these objectives 
are in conflict, implying that by improving one objective, 
another objective will become worse. MOPs with such 
conflicting objective will provide many optimal solutions, 
instead of only one. The reason for the optimality of more 
than one solution is that no one can be considered to be better 
than any other with respect to all objectives [5]. These optimal 
solutions are known as the Pareto-optimal solutions [6]. A 
solution , where  is the feasible region, is defined as 
either a Pareto-optimal solution or a non-dominated solution, 
if it does not exist another point, , such as 

and  for at least one function, 
where   and 

. A solution  is defined as Weakly Pareto-
optimal, if there does not exist another point, , such as 

.  

 
Fig. 1. Illustrative example of Pareto optimality 

2.1.2. Approaches to Solve Multi-objective Optimization 
Problems 

There exist many methods and algorithms for solving 
MOPs. These methods and algorithms can be divided in two 
categories: (i) classical methods which use direct or gradient-
based methods following some mathematical principles and 
(ii) non-classical methods which follow some natural or 
physical principles [7,8]. Classical methods mostly attempt to 
scalarize multiple objectives and perform repeated 
applications to find a set of Pareto-optimal solutions. In this 
first category, methods such as the weighted-sum method or 
scalarization method, ε-Constraints method, Goal-

programming, Goal-attainment method and min-max 
optimization can be found. What has made these methods 
attractive and why they have been so popular can be attributed 
to the fact that a wide range of well-studied algorithms for 
single-objective optimization problem (SOP) can be used. The 
main criticism of most of these methods is that although they 
may converge to one Pareto-optimal solution, these methods 
have to be applied many times in order to get more than one 
solution. This implies a systematic variation of weight vectors 
or ε parameters that does not guarantee a good diversity in the 
set of solutions and thus an inefficient search. In this iterative 
process, the systematic variation of parameters may also lead 
to an important CPU time. Moreover, some of these 
techniques may be sensitive to the shape of the Pareto-optimal 
front. Indeed, non-convex parts of the Pareto set cannot be 
reached by optimizing convex combinations of the objective 
functions [9]. Furthermore, as the solutions mainly depend on 
parameters such as, weights and upper/lower bounds, these 
methods also require certain knowledge in order to find 
Pareto-optimal solutions. Mainly due to these reasons the 
Multi-Objective Evolutionary Algorithms (MOEA), that stand 
for a class of stochastic optimization methods, have risen up. 
Schaffer [10] published the earliest work in the field of 
MOEA. He proposed a Vector Evaluated Genetic Algorithm 
(VEGA) based on the traditional Genetic Algorithm by using 
a modified selection. Since this first publication, the 
development of MOEA has successfully evolved, producing 
better and more efficient algorithms, due to in some way the 
incorporation of the elitism concept, which ensures that the 
number of non-dominating individuals in the population 
increases. According to their performances and 
characteristics, the MOEA can be classified in the following 
two groups: (i) First Generation, where the Multi-Objective 
Genetic Algorithm (MOGA), the Niched-Pareto Genetic 
Algorithm (NPGA) and the Non-dominated Sorting Genetic 
Algorithm (NSGA) can be found, and (ii) Second Generation, 
where the Strength Pareto Evolutionary Algorithm (SPEA), 
SPEA2 [11], the Memetic Pareto Achieved Evolution 
Strategy (M-PAES), the Pareto Envelope-based Selection 
Algorithm (PESA), PESA-II and the NSGA-II can be found.  

Two major problems must be addressed when an 
evolutionary algorithm is applied to solve MOP: 
(i) minimizing the distance to the optimal front and (ii) 
maximizing the diversity of the generated solutions. In this 
context, two fundamental issues have to be taken into 
consideration: (i) the mating selection and (ii) the 
environmental selection. The first issue is related to the 
question of how to guide the search towards the Pareto-
optimal front, while the second deals with the question of 
which individuals should be kept in the evolution process. 
The general concept, common to all these algorithms, is 
shown in Fig. 2.  

First an initial population, representing the starting point of 
the evolution process, is created at random (or according to a 
predefined scheme such as heuristics). In the fitness 
evaluation step, the fitness - reflecting the quality of a solution 
- is attributed. Afterwards, a binary tournament is normally 
used for the mating selection process. Here, the mating pool is 
filled up by individuals that have the best fitness values 
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