

Disponible en www.sciencedirect.com

Revista Iberoamericana de Automática e Informática industrial 12 (2015) 282-291

Modelado de Amortiguadores guiado por sus Diagramas Característicos

Jorge de-J. Lozoya-Santos^{a,1,*}, Diana Hernández-Alcantara^a, Ruben Morales-Menendez^a, Ricardo A. Ramírez-Mendoza^a

^aTecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. E. Garza Sada, 2501, Monterrey, NL 64,849 México.

Resumen

Una metodología para modelar amortiguadores guiada por sus diagramas característicos es presentada y validada. Los diagramas característicos del amortiguador son construidos a partir de datos experimentales generados por pruebas estándar: fuerza versus desplazamiento y velocidad versus aceleración. Estos son explorados en las frecuencias de interés. Los diagramas son clasificados en siete patrones, los cuales sirven de guía para construir el modelo matemático el cual puede identificarse con algoritmos convencionales. La metodología es validada con cuatro amortiguadores comerciales de diferentes tecnologías, obteniendo resultados con errores de estimación menores al 5 %. *Copyright* © 2015 CEA. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Palabras Clave: amortiguador semi-activo, amortiguador pasivo, modelado, metodología, simulación

1. Introducción

Un modelo matemático dinámico para un amortiguador automotriz debe simular fielmente su comportamiento, destacando las no linealidades (fricción, histéresis, inercia) en un rango de frecuencia menor a 30 Hz (en el dominio automotriz). Lo más importante en un amortiguador de uso automotriz son las características en los diagramas de *Fuerza-Velocidad (FV)* y *Fuerza-Desplazamiento (FD)*.

Existen muchos métodos de modelado. Un método ideal debe ser genérico y que permita ajustar un modelo a partir del análisis gráfico de los diagramas característicos, pues estos contienen la información para el diseño de la suspensión.

Un amortiguador *Pasivo* (P) tiene capacidad de amortiguamiento definida por su diseño mecánico, varia por la amplitud del desplazamiento y la frecuencia de oscilación. Sus diagramas característicos FV y FD son constantes ; puede estar diseñado para confort o agarre de superficie (o un balance de ambas).

Los amortiguadores *Semi-Activos* (*SA*) definen su capacidad por su diseño mecánico y por una señal externa que hace que varíe una propiedad mecánica del mismo. Cuando no existe esta señal externa, su estado es *P*. Sus diagramas característicos *FV* y *FD* son variables. Tres tecnologías comerciales son las más conocidas: *Pasiva* (*P*), *Magneto-Reológica* (*MR*) y *Electro-Hidráulica* (*EH*); en la Tabla 1 se comparan estas. Se han desarrollado modelos con parámetros sin significado físico, tales como: (i) pasivos, Duym (1997), (ii) *MR*, Choi et al. (2001), Savaresi et al. (2005a), y (iii) *EH*, Codeca et al. (2008). Los modelos con parámetros con significado físico como los fenomenológicos, se clasifican también como : (i) pasivo, Duym (2000), Carrera-Akutain et al. (2006), (ii) *MR*, Wang y Kamath (2006), Choi et al. (2001) y (iii) *EH*, Heo et al. (2003). Ejemplos de los modelos cuyos parámetros están ligados a los diagramas característicos son: (i) pasivo, Basso (1998), Calvo et al. (2009) y (ii) *MR*, Guo et al. (2006), Ma et al. (2007). Estos últimos son los de principal interés, ya que los parámetros pueden predecir la eficiencia del amortiguador en alguna maniobra del vehículo. En la tabla .11 describimos la nomenclatura.

Tabla 1: Comparación de	diferentes tecnolo	ogías de amorti	iguamiento.
-------------------------	--------------------	-----------------	-------------

Característica	Pasiva	MR	EH
Histéresis	Baja	Baja	Baja
Principio	Flujo	Viscosidad	Area de
	constante	variable	flujo variable
Manipulación	NA	Corriente Eléctrica	
Rango Manipulación	NA	0 – 2,5 A @ 12 V	0 – 5 A
Potencia	NA	30 W	> 60 W
Vel. Respuesta	NA	15 – 40 ms	10 – 60 ms
Otras	Seguridad	Clutches, Frenos	Control de
aplicaciones		Prótesis	flujo
Ventaja	Costo	Sistema de	Respuesta
	Mtto.	actuación	proporcional
Desventaja	Desempeño	Costo	Mtto.
Madurez Tecnológica	Alta		
Tiempo de Vida	80,000 Km	32,000 Km	40,000 Km
Costo relativo [%]	100	~5,000	~ 7.000

Dado que el diagrama FV se asemeja a una función sigmoi-

^{*}Autor en correspondencia.

Correos electrónicos: A00944078@itesm.mx (Jorge de-J.

Lozoya-Santos), A00469139@itesm.mx (Diana Hernández-Alcantara), rmm@itesm.mx (Ruben Morales-Menendez), ricardo.ramirez@itesm.mx (Ricardo A. Ramírez-Mendoza)

^{© 2015} CEA. Publicado por Elsevier España, S.L.U. Todos los derechos reservados http://dx.doi.org/10.1016/j.riai.2015.05.001

Autor/Año	Sims et al. (2004)	Ma et al. (2007)	Boggs (2009)
Objetivo	Prototipado y	Simulación	Simulación
	simulación		
Experimentos	Std / Variable	Std	Std
Parámetros	k_p, c_p, m_d	Dependientes	$k_p, c_p,$
	Cpre, Cpos	de modelo	F_s, τ
Ancho banda	0–15 Hz	0–5 Hz	0–15 Hz
No-linealidad	Fricción,	Cedencia	histéresis
	Histéresis	semi-activa	
Tecnologia	ER, MR	MR	Pasivo
Modelo	Algebráico	Dependiente de	Dinámico no
	con tanh	manipulación	lineal
Ventaja	Paramétrico	-	Cómputo
Desventaja	Muchos Experimen	Sin significado	
	tos y complejo	en diagramas característicos	

Tabla 2: Comparación de modelos

dal, existen tres modelos que han usado funciones trigonométricas (tangente hiperbólica y arco-tangente) con éxito en el modelado de la histéresis. Kwok et al. (2006) propuso usar la función para incluir la histéresis en base al signo del desplazamiento:

$$F_{Kwok} = \tanh(\underbrace{r_{pre}\dot{z}}_{\text{amortiguamiento}} + \underbrace{h_{pre}signo(z)}_{\text{histéresis}})$$
(1)

Guo et al. (2006) presentó una función pero no depende solo del signo, sino también de la magnitud:

$$F_{Guo} = \tanh(\underbrace{r_{pre}\dot{z}}_{\text{amortiguamiento}} + \underbrace{h_{pre}z}_{\text{histéresis}})$$
(2)

Çesmeci y Engin (2010) presentan la fuerza con histéresis utilizando una función sigmoidal y el signo de la aceleración:

$$F_{\text{Ces}} = \tan^{-1}(\underbrace{r_{pre}\dot{z}}_{\text{amortiguamiento}} + \underbrace{h_{pre}signo(\ddot{z})}_{\text{histéresis}})$$
(3)

Los resultados son buenos en términos de los diagramas *FV* para frecuencias, amplitudes y manipulaciones constantes pero limitados en precisión en la parte dinámica.

Sims et al. (2004) propone un método con resultados de alta precisión, pero el modelo no es genérico y requiere de pruebas muy específicas. Ma et al. (2007) propone modificar modelos de amortiguadores *P* multiplicando la fuerza por una fuerza dependiente de la corriente. Boggs (2009) desarrolla un modelo no lineal, donde la histéresis es incluida utilizando un retraso de la fuerza con un filtro de primer orden, no se incluye la fricción generada por la rigidez del diseño mecánico. Todos presentan funciones que son costosas computacionalmente. La Tabla 2 compara las propuestas discutidas.

Proponemos un método de diseño genérico basado en diagramas característicos para obtener un modelo de fácil identificación y simulación. En la sección 2 presentamos los fundamentos del método. En la sección 3 describimos el método. A traves de un caso ejemplificamos la propuesta en la sección 4. Finalmente, en la sección 5 concluimos la investigación.

2. Fundamentos

La fuerza total de un amortiguador semi-activo puede expresarse en dos términos, Dixon (2008):

$$F_{D|M} = F_P + F_{SA|M} \tag{4}$$

donde $F_{D|M}$ es la fuerza total dada una manipulación M; F_p es el término debido a los fenómenos mecánicos, y $F_{SA|M}$ es el término por la manipulación M. Si el amortiguador es pasivo, $F_D = F_p$. Los diagramas característicos cuando la manipulación es cero, $F_{D|M=0}$, muestran el desempeño cinemático. Cuando se analiza la fuerza $F_{SA|M\neq0} = F_{D|M\neq0} - F_p$, los diagramas característicos son llamados SA y muestran la variación controlable del amortiguamiento debido a una variable exógena, idealmente independiente de la cinemática.

La variable exogena influye en los diagramas característicos SA de acuerdo a la tecnología. Si es MR y ER, la variable modifica el fluido y por lo tanto la dinámica de los coeficientes de rigidez y amortiguamiento en los diagramas FD y FV. Si es EH, el diagrama FV variará en forma proporcional a la variable exógena, y la dinámica del diagrama FD es independiente.

Los diagramas característicos FD, FV y Fuerza-Aceleración (FA), Fig. 1, pueden describirse a través de ocho líneas $\{a, ..., h\}$ y por ocho puntos $\{A, ..., H\}$, después de cada línea x sigue el punto X. Estos puntos representan fenómenos debidos a la cinemática y/o variable exógena y son comunes en los tres diagramas, los llamaremos puntos característicos. El sentido de las curvas en los diagramas FD y FV es en el sentido de las manecillas del reloj, en el diagrama FA es en sentido contrario.

Figura 1: Diagramas característicos.

Existen tres tipos de puntos en los diagramas característicos. *Punto de cedencia*: la pendiente de la siguiente línea es menor. En los diagramas *FV*, *P* se relaciona con la activación de válvulas de mayor orificio en una velocidad límite, y en los Download English Version:

https://daneshyari.com/en/article/1701875

Download Persian Version:

https://daneshyari.com/article/1701875

Daneshyari.com