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a b s t r a c t 

This work investigates the possibility of plane waves propagating through an isotropic non- 

local microstretch solid of infinite extent. Five basic waves consisting of three longitudinal 

waves and two transverse waves may travel with distinct speeds. All these waves are fre- 

quency dependent and hence, dispersive in nature. The nonlocal parameter is present in 

the analytical expressions of phase speeds of all the existing waves. A comparison is also 

made to study the variation of phase speeds against nonlocal parameter. It is found that 

dispersion curves possess five branches: (a) a longitudinal acoustic branch, (b) a transverse 

acoustic branch, and (c) three optic branches. The reflection phenomenon of plane longi- 

tudinal wave incident at a stress free boundary surface of a nonlocal microstretch elastic 

half-space is studied and the formulae for various reflection coefficients are obtained. The 

variation of these reflection coefficients with angle of incidence has also been depicted 

graphically for a specific model. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Theory of nonlocal elasticity has been developed by many researchers, e.g., Krumhansl [1] formulate constitutive rela- 

tions using lattice theory, Kröner [2] formulated a continuum theory for elastic materials with long range cohesive forces, 

Eringen and Edelen [3] , Edelen and Law [4] , and Edelen et al. [5] developed the nonlocal elasticity theories characterized 

by the presence of nonlocality residuals of fields (like body force, mass, entropy, internal energy, etc.) and determined these 

residuals, along with the constitutive laws, by means of suitable thermodynamic restrictions. The concept of nonlocality 

has been extended to several other fields by Eringen [6–10] , McCay and Narsimhan [11] , Narsimhan and McCay [12] . The 

development of the nonlocal aspect of continuum mechanics has been nicely presented by Polizzotto [13] . Eringen [14] has 

introduced the theory of nonlocal polar elastic continua. He pointed out that in nonlocal theory of elasticity, the stress ten- 

sor at any reference point x within a continuous body depends not only on the strain at that point x but also significantly 

influenced by the strains at all other points x ′ of the continuous body. Thus, the nonlocal stress forces act as a remote action 

forces. These types of forces are frequently encountered in atomic theory of lattice dynamics. Within the context of nonlocal 

theory of elasticity, the length scale associated with nanostructures such as atomic distance between individual atoms can 

be represented by introducing small scale parameter in the constitutive equations. Such a nonlocal continuum mechanics is 

well established and has been applied to the problems of wave propagation. The application of nonlocal continuum mechan- 

ics for modeling and analysis of nanostructures has been made by several researchers, e.g., Narendar and Gopalakrishnan 

[15,16] , Narendar et al. [17] , Malagu et al. [18] etc. 

∗ Corresponding author. Tel.: +91 1722534523; fax: +91 1722541132. 

E-mail addresses: aarti_maths@yahoo.com (A. Khurana), sktomar66@gmail.com , sktomar@pu.ac.in (S.K. Tomar). 

http://dx.doi.org/10.1016/j.apm.2016.01.035 

S0307-904X(16)30023-3/© 2016 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.apm.2016.01.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2016.01.035&domain=pdf
mailto:aarti_maths@yahoo.com
mailto:sktomar66@gmail.com
mailto:sktomar@pu.ac.in
http://dx.doi.org/10.1016/j.apm.2016.01.035


A. Khurana, S.K. Tomar / Applied Mathematical Modelling 40 (2016) 5858–5875 5859 

Keeping in view the importance of remote action forces, we have derived the constitutive relations for nonlocal mi- 

crostretch elastic solid with the help of energy density function. Let us consider a nonlocal microstretch body occupying a 

volume V bounded by a closed surface S . Since the force stress tensor, couple stress tensor and microstretch vector depend 

on the strains at all points of the body, therefore, these quantities are expressed in the form of integral over the entire 

volume of the body. The constitutive relations and the governing equations of small motion for linear isotropic nonlocal 

microstretch elastic solid are derived and presented in compact form. The field equations and constitutive relations are then 

used to investigate the propagation of plane waves in an infinite isotropic, nonlocal microstretch elastic solid. It is seen that 

there may exist five plane waves in this solid, comprising of three longitudinal and two transverse waves. Of the three longi- 

tudinal waves, one is an independent wave and other two are the two sets of coupled waves. Each set of these two coupled 

waves consists of a longitudinal displacement wave and a longitudinal microstretch wave. The two transverse waves are 

also coupled waves and each set of these two coupled waves consists of a transverse displacement wave and a transverse 

microrotational wave perpendicular to it. The phase speeds of all these waves are found to depend on nonlocal parame- 

ter as well as on the frequency parameter. Thus, the phase speeds of all the existing waves are influenced by nonlocality 

parameter and also dispersive in nature. Dispersion curves are found to possess five branches, namely, longitudinal acous- 

tic branch, transverse acoustic branch and three optic branches. We have also obtained the formulae for amplitude ratios 

corresponding to various reflected waves when a set of coupled longitudinal waves is made to strike at the free boundary 

surface of a nonlocal microstretch half-space. The independent longitudinal wave and the two sets of coupled transverse 

waves existing in nonlocal microstretch elastic solid are the same as have been already encountered in nonlocal micropolar 

solid by Khurana and Tomar [19] . 

2. Constitutive relations and equations 

Within the context of linear theory, the free energy density function F is expressed as a quadratic symmetric function 

of the independent variables x and x ′ . Following Eringen [20] , the free energy density F can be expressed as a symmetric 

polynomial in terms of basic variables Y = { T , εkl , γlk , γk , ψ} at x and Y ′ = { T ′ , ε′ 
kl 

, γ ′ 
lk 

, γ ′ 
k 
, ψ 

′ } at x ′ as follows: 

2 F = 2 F 0 − 2 ρ0 

T 0 
CT T ′ − C 1 (T ′ ψ + T ψ 

′ ) − D k (T ′ γk + T γ ′ 
k ) − A kl (T ′ εkl + T ε′ 

kl ) − B kl (T ′ γkl + T γ ′ 
kl ) + U, 

where T is temperature, εkl is the relative distortion tensor, γ kl is the curvature tensor, γ k is the microstretch gradient and 

ψ is scalar microstretch. A prime on the symbols denotes their dependence on x ′ . The quantities εkl , γ kl and γ k are given 

by: 

εkl = u l,k − εklm 

φm 

, γkl = φk,l , γk = ψ, k , (1) 

and C, C 1 , D k , A kl , B kl are the material moduli. The quantities F 0 , ρ0 and T 0 are constants and may be defined as energy 

density in the natural state of the body, rest density and ambient temperature, respectively. The symbol U denotes the 

strain energy density function, given by: 

2 U = 

ρ0 

T 0 
CT T ′ + C S ψ ψ 

′ + C S k (ψ 

′ γk + ψ γ ′ 
k ) + A 

S 
kl (ψ 

′ εkl + ψ ε′ 
kl ) 

+ B 

S 
kl (ψ 

′ γkl + ψγ ′ 
kl ) + C S kl γ

′ 
k γl + A 

S 
klm 

(γ ′ 
k εlm 

+ γk ε
′ 
lm 

) + B 

S 
klm 

(γ ′ 
k γlm 

+ γk γ
′ 

lm 

) 

+ A klmn ε
′ 
kl εmn + B klmn γ

′ 
kl γmn + C klmn (ε

′ 
kl γmn + εkl γ

′ 
mn ) , 

where C S , C S 
k 
, A 

S 
kl 

, B S 
kl 

, C S 
kl 

, A 

S 
klm 

, B S 
klm 

, A klmn , B klmn and C klmn are the material moduli. 

Note that the expression of free energy function F ( Y, Y ′ ) has been obtained by expanding it in the neighborhood of a 

natural state into a Taylor series and omitting the terms having powers higher than two. 

All the material moduli are functions of x, x ′ and follow the symmetric regulations, e.g., 

C( x , x 

′ ) = C( x 

′ , x ) , A kl ( x , x 

′ ) = A kl ( x 

′ , x ) = A lk ( x , x 

′ ) , 
A 

S 
klm 

( x , x 

′ ) = A 

S 
klm 

( x 

′ , x ) = A 

S 
lkm 

( x , x 

′ ) , A klmn ( x , x 

′ ) = A klmn ( x 

′ , x ) = A mnkl ( x , x 

′ ) , etc. 

Following Eringen [20] , the constitutive relations are obtained from the relation: 

J = 

∫ 
V 

[ 

∂F 

∂Y 
+ 

(
∂F 

∂Y ′ 

)S 
] 

dV 

′ , 

where the set J = {−ρ0 η, t kl , m kl , m k , s − t} is an ordered set with set Y and η is the entropy density. Thus, the force stress 

tensor ( t kl ), couple stress tensor ( m kl ), microstretch vector ( m k ) and the quantities η and s − t are given by: 

ρ0 η = 

∫ 
V 

[ 
ρ0 

T 0 
C(x , x 

′ ) T ( x 

′ ) + C 1 (x , x 

′ ) ψ( x 

′ ) + D k (x , x 

′ ) ψ, k ( x 

′ ) 

+ A kl (x , x 

′ ) εkl ( x 

′ ) + B kl (x , x 

′ ) γkl ( x 

′ ) 
]
dV ( x 

′ ) , 

t kl = 

∫ 
V 

[ −A kl (x , x 

′ ) T ( x 

′ ) + A 

S 
kl (x , x 

′ ) ψ( x 

′ ) + A 

S 
mkl (x , x 

′ ) ψ, m 

( x 

′ ) 
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