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a b s t r a c t 

This paper deals with nonconservative mechanical systems as those subjected to noncon- 

servative positional forces and leading to non-symmetric tangential stiffness matrices. In a 

previous work, the geometric degree of nonconservativity of such systems, defined as the 

minimal number � of kinematic constraints necessary to convert the initial system into a 

conservative one is found to be, in the linear framework, the half of the rank of the skew- 

symmetric part of the stiffness matrix. In the present paper, news results are reached. First, 

a more efficient solution of the initial linear problem is proposed. Second, always in the 

linear framework, the issue of describing the set of all corresponding kinematic constraints 

is given and reduced to the one of finding all the Lagrangian planes of a symplectic space. 

Third, the extension to the local non-linear case is solved. A four degree of freedom system 

exhibiting a maximal geometric degree of nonconservativity ( s = 2 ) is used to illustrate our 

results. The issue of the global non-linear problem is not tackled. Throughout the paper, 

the issue of the effectiviness of the solution is systematically addressed. 

© 2016 Elsevier Inc. All rights reserved. 

Introduction 

Nonconservative elastic mechanical systems exhibit several paradoxical mechanical behaviors. Destabilizing effect by ad- 

ditional friction is certainly the most famous paradox of these mechanical systems and has been deeply investigated (see 

[1 –3] for example). One less reported paradoxical effect is the destabilizing effect by additional kinematical constraints. J.J. 

Thompson mentioned this effect in [4] but, to the best of our knowledge, this paradoxical effect had never been systemat- 

ically investigated before recently. This paradoxical effect led to the so-called kinematical structural stability (ki.s.s.) issue: 

when and how is it possible to destabilize by adding kinematical constraint(s) a given stable system? 

During the last five years, in a sequence of papers ( [5 –9] ), we elucidated this kinematical structural stability (ki.s.s.) issue 

for the linear divergence stability of both conservative and nonconservative elastic systems as well. A big part of these works 

are also related to the so-called second order work criterion introduced by Hill in the framework of plasticity in 1958 ( [10] ) 
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and independently introduced and used in the framework of elastic nonconservative systems in 2004 ( [11] ). The main result 

involves the symmetric part K s of the stiffness matrix and the magnitude of the load parameter as well but it does not 

depend on the number of the additional kinematic constraints. 

By duality to the ki.s.s. issue, we investigated in [12] the issue to convert by (judicious) additional kinematic constraints a 

nonconservative system � into a conservative one. This issue leads to the concept of geometric degree d of nonconservativity 

of �. Calculations show that d = s is the half s of the rank r of the skew-symmetric part K a ( p ) (that is always even r = 2 s ). 

In a second stage, a building of the judicious additional kinematic constraints C 1 , . . . , C s ∈ (R 

n ) s has been proposed thanks 

to the eigenspaces E −λ2 
i 
, i = 1 , . . . , s of the symmetric matrix K 

2 
a (p) whose the eigenvalues −λ2 

1 , . . . , −λ2 
s are all double: each 

C i may be chosen in each distinct E −λ2 
i 
. It is worth noting that, for both issues, the mechanical system � is approximated 

by its linear first order approximation at a given equilibrium configuration q e . That means that � is described by the mass 

matrix M and the stiffness matrix K . If p is a load parameter, then K = K(p) . The non-symmetry of K ( p ) (namely K � = K s or 

K a � = 0) is then the signature of the non-conservative nature of the mechanical system �. In our previous works, the source 

of the nonconservativity lies in external forces like follower forces acting on elastic system. Hypoelasticity may also be 

another mechanical framework leading to a similar mathematical problem. There exists a broad literature covering hypoe- 

lasticity (see for example [13 –16] ). 

In this paper we are concerned by finding the complete solution of the linear case and by the generalization and the 

extension to the non-linear differentiable case about to the latter issue. We then use the language of analytic mechanics. In a 

first time, we reinvestigate the linear case by using the language of exterior p-forms and especially exterior 1- and 2-forms. 

That allow us to more deeply highlight the issue of effectiveness of the calculation of the suitable kinematic constraints 

converting the system into a conservative one. That also allow us to investigate the issue of building the set of all the 

solutions and to illustrate the geometrical meaning of these solutions. To do it, the language of symplectic geometry is 

systematically used. That also suggests the good way for tackling the non-linear case. 

Thus, in a second time, we tackle the non-linear problem with appropriate notations and especially thanks to the lan- 

guage of differential p-forms. We accurately focus on the link with the linear case. In a third step, the solution is proposed 

by extending to the nonlinear case the concept of geometric degree of nonconservativity and yielding a geometric meaning 

to the corresponding non-linear constraints. In the last part, the issue of the calculation of the appropriate non-linear con- 

straints is investigated. The problem of a global solution in relationship with the topology of the configuration manifold is 

only evoked by just setting the convenient geometric framework of vector bundles. A four degree of freedom system called 

the Bigoni system (see [12 , 17] ) is continuously used throughout the paper to illustrate the general results. 

1. The linear case 

In what follows we refer to [12] . We only recall that for the linear framework, dynamic equation of the unconstrained 

system � read: 

M ̈X + KX = 0 , (1) 

with K any (namely non-symmetric) matrix and M symmetric positive definite. K is the stiffness matrix of the system and 

M its mass matrix. Because of the nonconservativity of the positional forces acting on σ , K is any. The minimum number 

of kinematic constraints allowing to convert the system into a conservative one (with a corresponding symmetric stiffness 

matrix) is the geometric degree of nonconservativity of �. (1) is deduced from the Lagrange equation by the usual process 

of linearization about an equilibrium configuration. 

1.1. Effectiviness of the solution proposed in [12] 

In introduction, we already recalled the algebraic meaning of the geometric index or degree of nonconservativity: this 

the half s of the rank r = 2 s of K a and the distinct constraints, viewed as vectors of R 

n , can be chosen in the s distinct 

eigenspaces E −λ2 
i 
, i = 1 , . . . , s of K 

2 
a . We now question the effectiveness of the building of the constraints as proposed in 

[12] . To do it, we use the spectral theorem for K 

2 
a . What does mean the effectiveness for the spectral theorem? The usual 

proof is done by induction on the dimension of the space. For initializing the induction reasoning, the D’Alembert Gauss 

theorem is used for finding an eigenvalue of the characteristic polynomial of K 

2 
a and this theorem is not effective in the 

sense where only a numerical method may lead to (an approximation of) the eigenvalues. So, with these tools, the solution 

of the linear case itself is not effective. Remark however that the constraints are also the critical points of the Rayleigh 

quotient R associated with K 

2 
a and that only the eigenspaces are interesting and not the eigenvalues −λ2 

i 
, i = 1 , . . . , s . The 

use of Rayleigh quotient is then especially relevant and the constraints may be evaluated by successive minimizations of 

R (X ) = − X T K 2 a X 

X T X 
. By Minimax theorem, the constraints are also the solutions of 

min 

dim F = k 
max 

X∈ F \ { 0 } 
R (X ) , 

for k = 1 , . . . , n avoiding by this way the use of D’alembert–Gauss theorem. However, this minimization process gives no 

analytic explicit result. 
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