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a b s t r a c t

In the paper a numerical analysis of thermal processes proceeding in a soft tissue subjected to

a laser irradiation is presented. The transient bioheat transfer in the 3D domain considered is

described by the generalized dual-phase lag equation. The internal heat source resulting from

the laser irradiation based on the solution of the diffusion equation is taken into account.

The process of the thermal destruction of the tissue is also analyzed. At the stage of numerical

realization the explicit scheme of finite difference method is used. In the final part of the paper

the results of computations for different variants of tissue porosity are shown.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Modeling of physical processes proceeding in biological tissues subjected to a laser beam can be divided into three steps,

namely the modeling of laser energy deposition, the temperature distribution and the damage in laser irradiated tissue [1].

To describe the light propagation in biological tissues the different mathematical models can be used [2–7]. The most fun-

damental approach, which is difficult from the mathematical point of view, is the so-called analytical theory which starts from

the Maxwell equations. On the other hand, the transport theory concerns directly the transport of light through absorbing and

scattering media and in this case the radiative transport equation should be taken into account, e.g. [8–12]. To solve this equation

several modifications of the discrete ordinates method (DOM) and statistical Monte Carlo (MC) methods are widely used, e.g.

[13,3,14,15]. In some cases it is possible to approximate the light transport using the diffusion equation [16–20]. As the scattering

generally dominates over the absorption in soft tissues for wavelengths between 650 and 1300 nm, so in this paper the diffusion

approximation is applied.

The Pennes equation [21] is one of the earliest bioheat transfer equations which describes the temperature distribution in the

living tissues and for the constant thermophysical parameters it has a form:

ρc
∂T

∂t
= λ∇2T + Q, (1)

where c [J/(kg K)] is the specific heat of tissue, ρ [kg/m3] is the density, λ [W/(m K)] is the thermal conductivity, T = T(x, t) is the

tissue temperature (x denotes spatial coordinates, t is the time).

The capacity of internal heat sources Q = Q(x, t) [W/m3] can be written in the following form:

Q = wcb(Tb − T) + Qm + Qex, (2)
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where w [kg/(m3 s)] is the blood perfusion rate, cb is the specific heat of blood, Tb is the arterial blood temperature, Qm is the

metabolic heat source and Qex = Qex(x, t) is the source function associated with the external heating of tissue. The Pennes bioheat

equation is based on the classical Fourier’s law of heat conduction which assumes that the thermal disturbance propagates with

an infinite speed. So far, it is the most frequently used model to determine the temperature distribution in biological tissues, e.g.

[18,22–29].

Heterogeneous structure of biological tissues is taken into account in the other models of bioheat transfer, for example in the

hyperbolic thermal wave model (Cattaneo–Vernotte equation) or the dual-phase lag model (DPLM). In the Cattaneo–Vernotte

equation [30,31]:

cρ

(
∂T

∂t
+ τq

∂2T

∂t2

)
= λ∇2T + Q + τq

∂Q

∂t
, (3)

the relaxation time τ q [s] is the delay in establishing the heat flux vector, in others words, the temperature gradient always

precedes the heat flux vector.

In the dual-phase lag equation [32]:

cρ

(
∂T

∂t
+ τq

∂2T

∂t2

)
= λ∇2T+λτT

∂

∂t

(∇2T
)

+ τq
∂Q

∂t
, (4)

both the heat flux and temperature gradient are delayed. The delay of temperature gradient is called the thermalization time

τ T [s].

As can be seen, for τ T = 0 the DPLM is simplified to the Cattaneo–Vernotte equation and for τ T = τ q = 0 to the Pennes

equation. In the discussed models the appropriate estimation of the delay times is the significant problem. Values of these

parameters are usually determined experimentally [33–35] and they are ranged from 0.01 to 32 s.

In recent years, the thermal wave model and the dual-phase lag equation are often used to calculate the temperature distri-

bution in biological tissues, e.g. [11,12,36–41].

The last step in the analysis of tissue heating process is to estimate the degree of its destruction. For this purpose, the so-called

Arrhenius integral is most frequently applied, although other models are also used, for example the thermal dose parameter

[42,43]. Arrhenius scheme assumes the exponential dependence between the temperature and the degree of tissue destruction,

so the following integral is taken into account [26,5]:

�(x) = P

∫ tF

0

exp

(
− E

Rg T(x, t)

)
dt, (5)

where P [1/s] is the pre-exponential factor, E [J/mol] is the activation energy, Rg [J/(mol K)] is the universal gas constant, T (x, t)

[K] is the tissue temperature, t denotes time and [0, tF] is the time interval under consideration.

A value of damage integral �(x) = 1 corresponds to a 63% probability of cell death at a specific point x, while �(x) = 4.6

corresponds to 99% probability of cell death at this point [44]. Besides the basic information on whether the tissue was destructed

or not (in accordance with the necrosis criterion, this means �(x) ≥ 1), one can deduce the time after which the tissue damage

is to occur.

The tissue injury integral basically refers only to the irreversible tissue damage, however, there are models which allow to

take into account the withdrawal of tissue injury in the case of temporary, small local increasing of temperature [27]. Through

the approach presented in [27] it is possible to determine the time after which the thermal lesion is formed.

The purpose of this paper is to analyze the phenomena occurring in the laser-treated soft tissue, in which the heat conduction

in the tissue is described by the generalized dual-phase lag model [45]. In this model, based on the theory of porous media the

phase lag times are expressed in terms of the properties of blood and tissue, interphase convective heat transfer coefficient and

the blood perfusion rate. Using this model, for different levels of tissue perfusion the degree of their destruction can be compared.

Thus, the paper consists of the following parts. At first, the generalized dual-phase lag equation (GDPLE) is presented and the

problem analyzed is formulated. Next, the way of GDPLE solution basing on the explicit scheme of the finite difference method

is described and the examples of computations are shown. In the final part of the paper the conclusions are formulated.

2. Generalized dual-phase lag equation

Heterogeneous structure of biological tissue can be described in several ways. One of them is to divide the tissue into two

regions: the vascular region (blood vessels) and the extravascular region (tissue) [46,47]. Then, the porosity ε is defined as the

ratio of blood volume to the total volume and two equations describing the temperature distribution in the tissue Tt and blood

vessels Tb are considered, namely

(1 − ε)ρt ct
∂Tt

∂t
= (1 − ε)λt∇2Tt + αA(Tb − Tt) + wcb(Tb − Tt) + (1 − ε)Qmt + (1 − ε)Qex (6)

and

ερbcb

(
∂Tb

∂t
+ u · ∇Tb

)
= ελb∇2Tb + αA(Tt − Tb) + w cb(Tt − Tb) + εQmb + εQex, (7)
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