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a b s t r a c t

In this study, we propose shifted fractional-order Jacobi orthogonal functions (SFJFs) based on

the definition of the classical Jacobi polynomials. We derive a new formula that explicitly ex-

presses any Caputo fractional-order derivatives of SFJFs in terms of the SFJFs themselves. We

also propose a shifted fractional-order Jacobi tau technique based on the derived fractional-

order derivative formula of SFJFs for solving Caputo type fractional differential equations

(FDEs) of order ν (0 < ν < 1). A shifted fractional-order Jacobi pseudo-spectral approxima-

tion is investigated for solving the nonlinear initial value problem of fractional order ν . An

extension of the fractional-order Jacobi pseudo-spectral method is given to solve systems of

FDEs. We describe the advantages of using the spectral schemes based on SFJFs and we com-

pare them with other methods. Several numerical example are implemented for FDEs and

systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and

efficiency of the proposed techniques.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the last few decades, the applications of fractional calculus have been extended to various areas such as control engineering

[1,2], signal processing [3], biosciences [4], electromagnetism [5], fluid mechanics [6], diffusion processes [7], electrochemistry

[8], continuum and statistical mechanics [9], the dynamics of viscoelastic materials [10], propagation of spherical flames [11], and

pharmacokinetics [12]. Many researchers have considered the theory of the existence and uniqueness of FDEs, such as [13–16].

Developing analytical and numerical methods for the solutions of FDEs is a very important task. Indeed, it is difficult to obtain

exact solutions for most FDEs. Therefore, attempts have been made to propose analytical methods that approximate the exact

solutions of these equations, such as the Adomian decomposition [17], variational iteration [18], and homotopy perturbation [19]

methods. Recently, numerical methods have also been proposed for solving FDEs [20–26].

In terms of accuracy, one of the best methods for obtaining the numerical solutions of various types of differential equations

is the spectral method (see [27–31]). All types of spectral methods are global, so they are highly convenient for approximating

the solutions of linear and nonlinear FDEs [32–35]. Doha et al. [36] presented and developed spectral tau and collocation tech-

niques for solving multi-term FDEs including linear and nonlinear terms using Jacobi polynomials, where they generalized the

quadrature Legendre tau method [37] and the Chebyshev spectral methods [38]. Recently, [39] proposed a new fractional-order

Legendre orthogonal function based on Legendre polynomials for obtaining highly accurate solutions of FDEs in a finite interval.

∗ Corresponding author. Tel.: +966536361835.

E-mail addresses: alibhrawy@yahoo.co.uk (A.H. Bhrawy), ma.zaky@yahoo.com (M.A. Zaky).

http://dx.doi.org/10.1016/j.apm.2015.06.012

S0307-904X(15)00389-3/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.apm.2015.06.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2015.06.012&domain=pdf
mailto:alibhrawy@yahoo.co.uk
mailto:ma.zaky@yahoo.com
http://dx.doi.org/10.1016/j.apm.2015.06.012


A.H. Bhrawy, M.A. Zaky / Applied Mathematical Modelling 40 (2016) 832–845 833

Yin et al. [40] proposed a two-dimensional version of fractional-order Legendre orthogonal functions and derived the opera-

tional matrices of derivative and integrals for these functions to solve the two-dimensional FDEs. In addition, to solve FDEs on a

semi-infinite interval, Bhrawy et al. [41] derived the fractional integrals of a generalized Laguerre operational matrix to obtain

approximate solution of the linear FDEs. Moreover, a system of FDEs with uncertainty was solved by the eigenvalue–eigenvector

method in [42].

In this study, we define new orthogonal functions called shifted fractional-order Jacobi orthogonal functions (SFJFs) based on

the shifted Jacobi polynomials, and we derive a new formula that explicitly expresses any Caputo fractional-order derivative of

SFJFs in terms of the SFJFs themselves. Thus, we propose a direct technique for solving linear fractional differential equations

(FDEs) of fractional order ν (0 < ν < 1) using the shifted fractional-order Jacobi tau method (SFJTM). We also propose a new

shifted fractional-order Jacobi collocation method (SFJCM) for solving the fractional initial value problem of fractional order ν
(0 < ν < 1) with nonlinear terms, where the nonlinear FDE is collocated at the N zeros of the SFJF defined on the interval [0,

1]. The resulting algebraic equations and one algebraic equation obtained from treating the initial condition comprise (N + 1)
nonlinear algebraic equations, which can then be solved by implementing Newton’s iterative technique to find the unknown

SFJFs coefficients. We extend the application of SFJCM based on SFJFs to solve a system of linear FDEs with fractional orders of

less than 1. The spectral approximations based on fractional-order Chebyshev functions and fractional-order Legendre functions

[39] are special cases of the proposed approximations, and the proposed approach contains many other special cases. Several

numerical examples are implemented to confirm the high accuracy and effectiveness of the proposed method for solving FDEs

of fractional order ν (0 < ν < 1). Our methods extend and improve existing methods that have been reported previously.

The remainder of this paper is organized as follows. First, we present some necessary definitions of the fractional calculus

in Section 2. In Section 3, we define the SFJFs. In Section 4, we derive the main theorem of this study, which provides a new

formula that explicitly expresses the fractional-order derivative of the SFJFs in terms of the SFJFs themselves. In Section 5, we

apply spectral methods based on SFJFs to solve FDEs and systems of FDEs including linear and nonlinear terms of fractional order

less than 1. Several examples are presented in Section 6 to illustrate the main ideas in this study based on comparisons. We give

our conclusions in Section 7.

2. Preliminaries and notations

In this section, we give some basic definitions and properties of fractional calculus theory, which are used in this study.

Definition 2.1. The Riemann–Liouville fractional integral operator of order ν ≥ 0 is given by

Jν f (x) = 1

�(ν)

∫ x

0

(x − t)
ν−1

f (t)dt, ν > 0, x > 0,

J0 f (x) = f (x). (2.1)

Definition 2.2. The Caputo fractional derivative of order ν is defined by

Dν f (x) = Jm−νDm f (x) = 1

�(m − ν)

∫ x

0

(x − t)
m−ν−1 dm

dtm
f (t)dt,

m − 1 < ν ≤ m, x > 0, (2.2)

where m is the smallest integer greater than ν .

The operator Dν satisfies the following properties

DνC = 0, (C is a constant), (2.3)

Dνxβ =

⎧⎨
⎩

0, for β ∈ N0 and β < �ν�,

�(β + 1)

�(β + 1 − ν)
xβ−ν, for β ∈ N0 and β ≥ �ν� or β �∈ N and β > 	ν
,

where �ν� and 	ν
 are the ceiling and floor functions, respectively, while N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}.

Caputo’s fractional differentiation is a linear operation,

Dν(λ f (x) + μg(x)) = λDν f (x) + μDνg(x), (2.5)

where λ and μ are constants.

3. Fractional-order Jacobi functions

In this section, we present some useful properties of Jacobi polynomials. Next, we define the SFJFs.
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