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a b s t r a c t

In this study, we consider a nonsmooth optimal control problem. First, we convert this prob-

lem into the corresponding smooth optimal control problem using a practical generalized

derivative. Next, we utilize the Chebyshev pseudo-spectral method to solve the smooth prob-

lem and analyze the feasibility and convergence of the approximations obtained. Finally, we

approximate the optimal solutions of some nonsmooth optimal control problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Optimal control (OC) problems, including nonlinear ordinary differential equations (ODEs), occur in many applications such as

mechanics, economics, robotics, and aeronautics. There are two general classes of methods for solving OC problems: direct meth-

ods and indirect methods. Direct methods are based on discretization and parameterization, which lead to nonlinear program-

ming. The class of direct methods includes quasilinearization methods, steepest descent methods, quasi-Newton approximations

methods, spectral and pseudo-spectral methods, algorithmic differentiation methods, finite difference methods, measure the-

oretical approaches, linearization methods, control parameterization methods, and time-scaling transformation methods, (e.g.,

see [1–15]). However, indirect methods are based on the Pontryagin minimum (or maximum) principle and Hamiltonian-Jacobi-

Bellman equations, which can lead to problems with initial or boundary values due to the necessary optimality conditions for OC.

We can solve the initial or boundary problems in these methods by using collocation methods [1,16] and spectral and pseudo-

spectral methods [17–20]. However, some OC problems involve a nonsmooth dynamical system. The nonsmooth dynamical

systems (see [21–34]) include discontinuous functions or continuous but nondifferentiable functions. Some well-known nons-

mooth dynamical systems are nonsmooth electrical circuits, mechanical systems with Coulomb friction and impact, ODEs with

discontinuous right-hand side, and switching systems. Queiroz et al. [35] presented a collection of research results dealing with

nonsmoothness in OC problems. In nonsmooth OC problems, we cannot utilize the direct and indirect methods described above

because these methods usually require the differentiation, gradient, Hessian, and Jacobian of functions to obtain the optimal

solution.

The major developments in nonsmooth OC problems are related to the necessary conditions for optimality based on nons-

mooth analysis (see [36,37]). The techniques employed to derive these conditions involve expansions of the studies by Rockafellar
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[37–41], Clarke [42–45], Ioff [46–48], Loewen and Rockafellar, [49,50], Mordokovich [51,52], and Vinter [53]. Moreover, in these

developments, the nonsmooth OC problems are usually converted into OC problems that involve inclusion differential equations.

However, we cannot use these optimality conditions to solve the nonsmooth OC problem in practical and numerical terms. In

fact, these conditions are employed to test the optimality of a given solution. For instance, the necessary conditions for optimal-

ity were presented by Vinter (see pages 203, 206, and 214 in [53]). In addition, there are some numerical methods for solving

nonsmooth OC problems that involve a special dynamical system (see [54–56]).

Hence, in the present study, we propose an applied direct approach for obtaining an approximate optimal solution for a class

of nonsmooth OC problems, as follows:

Minimize J(x(.), u(.)) = ρ(x(b)) +
∫ b

a

f (t, x(t), u(t)) dt (1)

subject to ẋ(t) = h(t, x(t)) + p(t, x(t), u(t)), t ∈ [a, b], (2)

x(a) = α, x(t) ∈ A, u(t) ∈ B, t ∈ [a, b] (3)

where a, b are the given real numbers, α ∈ R
n, x(.) : [a, b] → A ⊆ R

n is the state variable, and u(.) : [a, b] → B ⊆ R
m is the control

variable. Moreover, we consider the following assumptions for the nonsmooth OC problem (1)–(3).

I. Functions,ρ(.), f (., ., .) and p(., ., .) are differentiable (or smooth) with respect to their arguments.

II. h(., .) is a continuous nonsmooth function and it is not constant with respect to its second argument. Moreover, the set of

nonsmoothness points of h(t, .) for all t ∈ [a, b] and h(., x) for all x ∈ A is countable. Furthermore, we assume that h(., .) is

smooth in point (a, α).

III. The ODE (2) holds Lebesgue almost everywhere (a.e.) (see Folland [57]) on the interval [a, b].

We say that a state-control pair (x(.), u(.)) is admissible if the following conditions hold.

(1) The state x(.) satisfies x(t) ∈ A, t ∈ [a, b] and is differentiable on [a, b].

(2) The control u(.) satisfies u(t) ∈ B, t ∈ [a, b] and is piecewise continuous on [a, b].

(3) The condition x(a) = α is satisfied.

(4) The pair (x(.), u(.)) satisfies the differential Eq. (2) Lebesgue a.e. on the interval [a, b] in the sense of Caratheodory.

Furthermore, we can say that the admissible pair (x∗(.), u∗(.)) is an optimal solution to the nonsmooth OC problem (1)–(3)

when J(x∗(.), u∗(.)) ≤ J(x(.), u(.)) for any admissible pair (x(.), u(.)).

In this study, we use the practical generalized derivatives (GDs) of nonsmooth functions, which were proposed in [58–60]

and we describe them briefly. We then employ these generalized derivatives to convert the nonsmooth OC problem (1)–(3) into

the corresponding form. We utilize the Chebyshev pseudo-spectral (CPS) method and we approximate the obtained smooth OC

problem by the finite dimensional nonlinear programming (NLP) problem. By solving the latter NLP problem, we can approximate

the optimal state and the OC of the nonsmooth OC problem (1)–(3).

The remainder of this paper is organized as follows. In Section 2, we introduce a practical generalized derivative for nons-

mooth functions. In Section 3, we convert the nonsmooth OC problem (1)–(3) into the corresponding smooth OC problem. In

Section 4, we approximate the smooth OC problem by the NLP problem using the CPS method. In Section 5, we analyze the fea-

sibility and convergence of the problem obtained. In Section 6, we approximately solve some nonsmooth OC problems using our

proposed approach. In Section 7, we give our conclusions.

2. A practical generalized derivative

There are many GDs and subdifferentials for a special class of nonsmooth functions, which were introduced by Rockafellar

[37–41], Clarke [42–45], Ioff [46–48], Mordukhovich [51,52], and others. These GDs are examples of the Jeyakumar pseudo-

Jacobians (see [61]) and we generally cannot use these GDs to solve continuous and discrete-time nonsmooth optimization

problems in a numerical manner. Of course, other practical GDs were described in [62,63], which can be used to solve the

nonsmooth ODEs. Here, we briefly introduce a practical GD proposed by Noori Skandari et al. [58–60], which utilize in the

following section.

Let � be a connected and compact set and L : � ⊂ R
n → R is a continuous nonsmooth function. Assume that C(�) and

C1(�) are the spaces of continuous and continuous differentiable functions on the set �, respectively. We assume that ϕ j(.), j =
0, 1, 2, . . . , are the continuously differentiable basic functions for the space C(�) and we suppose that Nδ(s) is the neighborhood

of s with radius δ. Divide the set � into similar sets �i, i = 1, 2, . . . , m (where m is a sufficiently big number) such that � =
∪m

i=1
�i and int(�i) ∩ int(� j) = φ for i 
= j (the notation int denotes the interior of the set). In addition, select the arbitrary

points si ∈ int(�i), i = 1, 2, . . . , m. Now, consider the following optimization problem:

Minimize
ajk∈R

m∑
i=1

∫
Nδ(si)

∣∣∣∣∣L(x) − L(si) −
n∑

k=1

∞∑
j=0

(xk − sik)ajkϕ j(si)

∣∣∣∣∣ dx, (4)
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