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a b s t r a c t

In this study, we present a modified configuration, including an exact formulation, for the

operational matrix form of the integration, differentiation, and product operators applied in

the Galerkin method. Previously, many studies have investigated the methods for obtaining

operational matrices (derivative, integral, and product) for Fourier, Chebyshev, Legendre, and

Jacobi polynomials, and some have considered the non-orthogonal bases that almost all of

them operate on approximately. However, in this study, we aim to obtain the exact operational

matrices (EOMs), which can be used for many classes of orthogonal and non-orthogonal poly-

nomials. Similar to previous approaches, this method transforms the original problem into a

system of nonlinear algebraic equations. To retain the simplicity of the procedure, the sam-

ples are considered in one-dimensional contexts, although the proposed technique can also

be employed for two- and three-dimensional problems. Two examples are presented to verify

the accuracy of the proposed new approach and to demonstrate the superior performance of

EOMs compared with ordinary operational matrices. The corresponding results demonstrate

the increased accuracy of the new method. In addition, the convergence of the EOM method

is studied numerically and analytically to prove the efficiency of the method.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Conventional methods

Orthogonal functions and polynomials have been employed widely for solving various problems, such as ordinary differen-

tial equations (ODEs) [1–7], partial differential equations (PDEs) [8–13], integral equations [14–17] and other types of equations

[18–20]. The main aim of this approach is to reduce the problem to solving a system of algebraic equations, which is obviously

a great simplification. This approach is based on the approximation of all of the functions used in the system as a truncated

polynomial series (e.g., Fm(x) = { f0(x), f1(x), f2(x), . . . , fm(x)}, where Fm(x) is called the basis set and fi(x)s are called basis poly-

nomials, such as Chebyshev or Legendre polynomials). Operational matrices (integral, product, and differentiation matrices) are

then used to omit the corresponding operators.

The main method for implementing this approach is to first approximate all of the known functions as well as the unknown

function (e.g., y(x)) to ensure that they are located within the span(Fm(x)), before performing operations on y(x) (such as integra-

tion and product) using ordinary operational matrices (OOMs).

∗ Corresponding author. Tel.: 00989375092738.

E-mail addresses: k_parand@sbu.ac.ir (K. Parand), hossayni@iran.ir (S.A. Hossayni), ja.amani66@gmail.com, j.amanirad@gmail.com, j_amanirad@sbu.ac.ir (J.A.

Rad).

http://dx.doi.org/10.1016/j.apm.2015.07.002

S0307-904X(15)00399-6/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.apm.2015.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2015.07.002&domain=pdf
mailto:k_parand@sbu.ac.ir
mailto:hossayni@iran.ir
mailto:ja.amani66@gmail.com
mailto:j.amanirad@gmail.com
mailto:j_amanirad@sbu.ac.ir
http://dx.doi.org/10.1016/j.apm.2015.07.002


994 K. Parand et al. / Applied Mathematical Modelling 40 (2016) 993–1011

To illustrate the concept of OOMs, we first define a vector φm(x) comprising elements of Fm(x)

φm(x) = [ f0(x) f1(x) f2(x) · · · fm(x)]T . (1)

The integral operational matrix for the basis vector φm(x) operates as∫ x

0

φm(t)dt � Pm×mφm(x), (2)

and for the product operational matrix as,

φm(x)φm(x)T c � Ĉφm(x), (3)

as well as for the differentiation operational matrix

d

dx
φm(x) = Dm×mφm(x). (4)

The main function of OOMs is to conduct the desired operations so the residual remains in span(Fm(x)).

Each time a term is approximated, the accuracy will quite probably decrease. In other words, if the term (function) is outside

of span(Fm(x)), then using its projection on span(Fm(x)) decreases the accuracy of the residual.

Therefore, using this method for solving a dynamical system may lead to repeated approximations before reaching the resid-

ual function of the system. For example, in relation (1), let fi(x) = xi and y(x) = cT φ10(x). If we want to approximate y3(x) using

OOMs, we have

y3(x) � cT
(
Ĉ
)2

φ10(x) ∈ span{F10(x)},
but we know that y3(x) ∈ span{F30(x)}. This means that there is a huge loss of dimension in the approximation.

1.2. A new idea

In our alternative approach, we do not need to perform these repeated approximations. The only function that is approxi-

mated must be located in span(Fm(x)) is y(x)(� cT φm(x), c =
[
c0 c1 · · · cm

]T
), which is because of the nature of the ap-

proach.

In this study, we propose a new method for implementing this approach with far fewer restrictions. In this new method,

although all of the terms must be approximated in span(Fn(x)), we can freely choose the arbitrary n (as large as we need) for each

term.

Therefore, during the integration process, we do not restrict the result to being located in the span(Fm(x)) and it can also be in

the span(Fn(x)), (n > m) for an arbitrary n. Thus, we can have an exact integration matrix∫ x

0

φm(t)dt = Pm×m+1φm+1(x). (5)

Moreover, to multiply two unknown functions, we can introduce the exact product matrix

φp(x)φq(x)T c = φT
p+q(x) ̂C(p+q)×q. (6)

We can even reduce the dimension of the function space. Hence, we can have the following differentiation matrix

d

dx
φm(x) = Dm×m−1φm−1(x), (7)

and without loss of generality, we suppose that the system has just one equation (if there are more, then the procedure is also

applied to them). By applying the new method, each term of the equation is approximated by a basis vector (e.g., dT
nφn(x), where

d is a vector of length n that approximates one of the terms of the system). To obtain the residual function of the dynamical

system, we must sum all of the approximated terms. To allow us to sum all of the different sized matrices, all of the terms should

be the same size, such as d′T
NφN(x) (N is the maximum n among all). This is achieved using “the increaser matrix,” which we

introduce in Section 2.4.2.

By summing all of the terms, we obtain the Residual(x) =∑nt
i=0 d′

NψN(x) = R1×(N+1)φN(x). Thus, R1×(N+1) will be a vector

function on cis (elements of the unknown vector c), as introduced at the beginning of this section. To solve the system, we must

set cis so the best residual will be obtained. In this study, our interpretation of the “best residual function” or “the nearest residual

function to zero” for a specific norm ‖ · ‖ is the function r(x) such that

∀ f (x) ∈ span(Fm(x)) : ‖r(x)‖ ≤ ‖ f (x) − r(x)‖. (8)

Thus, r(x) is a function where its best approximation in span(Fm(x)) is the zero function. This is obtained by solving the algebraic

system

R∗
m = R1×(N+1)QN,m = 0, (9)

where the matrix QN, m (named Q matrix) is described in Section 2.4.7. By solving the algebraic system above, we find the m

unknown coefficients (elements of vector cm), and thus we obtain the final solution (y(x) � cT
m × ψm(x)).
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