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a b s t r a c t

A two-grid variational multiscale (VMS) method based on two local Gauss integrations for the

convection dominated nonlinear convection diffusion equation is investigated. This method

combines the two-grid strategy with the variational multiscale method which chooses poly-

nomial bubble functions as subgrid scale. Two local Gauss integrations are applied to replace

the projection operator without adding any extra storage. Moreover, the error estimates for

the algorithms of the two-grid method are obtained. Numerical examples validate the theo-

retical results of the presented methods.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The convection diffusion equations describe a lot of physical phenomenons in computational fluid dynamics such as chemical

reaction processes, heat conduction, nuclear reactors, population dynamics, just to name a few. The governing equations are

often with a nonlinear source or sink term. In this work we consider the following stationary nonlinear convection diffusion

equations:

α · ∇u − ε�u = f (u), in �, (1)

u = 0, on ∂�, (2)

where � ⊂ R
2 is a bounded domain with C2 boundary ∂�. The constant ε is the diffusion coefficient and α is either a con-

stant vector or a divergence free velocity field. The nonlinear reaction terms f(u) appear usually in the form of products and

rational functions of concentrations, or exponential functions of the temperature, expressed by the Arrhenius law in chemical

engineering.

When ε � 1, Eq. (1)–(2) is a convection dominated problem. The standard continuous piecewise linear finite element method

may produce a large non-physical oscillations to the approximate solutions, unless the mesh size is small enough with respect

to the diffusion coefficient. In order to overcome the numerical instabilities, people introduce different stabilization methods,

such as, the Galerkin least square (GLS) method [1,2], stream upwind Petrov Galerkin (SUPG) method [3,4], the residual-free bub-

bles (RFB) method [5,6], the local projection stabilization [7,8] and etc. for linear convection dominated problems. For nonlinear

convection dominated problems, Markus Bause in [9] provided SUPG stabilized higher-order finite element approximations of
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convection diffusion reactions models with nonlinear reaction mechanisms. Markus et al. [10,11] analyzed the numerical per-

formance properties of higher order finite element approaches along with SUPG and additional shock-capturing stabilization for

nonlinear convection dominated problem. Yücel et al. [12] studied convection diffusion reaction models with nonlinear reaction

mechanisms by using the discontinuous Galerkin method and the upwind symmetric interior penalty Galerkin (SIPG) method.

However, the SUPG methods have some drawbacks in application: it brings in additional nonphysical coupling term and hence

unphysical oscillations near the boundary; and the second order derivative is needed for the high order finite element approxi-

mations. To overcome those drawbacks of SUPG methods, alternative some stabilization methods have been reformulated in the

framework of the variational multiscale method. Hughes [13] proposed the variational multiscale method (VMS) to overcome

spurious oscillations in solutions which is caused by the multiscale structure of the problem. The VMS method decomposes the

solution into large scale and small scale such that one can obtain a coupled system of two sub-problems for the different scales.

In such way one can obtain a stabilized formulation. There are different ways to define the large scale problem in the varia-

tional multiscale method, for example, projection into appropriate subspaces is applied in Hughes et al. [14,15], Guermond [16],

Layton [17,18] and Zheng et al. [19]. Especially, Song et al. [20] proposed a variational multiscale method based on polynomial

bubble functions as subgrid scale for linear convection dominated convection diffusion equation. Similar as the work of Song

et al. [20], we extend this method to solve the nonlinear convection diffusion problem. More precisely, we add an eddy viscosity

stabilization which chooses a bubble function as subgrid scale, and the projection operator is reformulated by the local Gaussian

quadrature. It keeps the same efficiency without adding any extra storage compared with common VMS in [21].

To increase the efficiency of a numerical method, an alternative idea is the two-grid method. The two-grid discretization

strategy is to compute the nonlinear equation on a coarse mesh, then to solve a linearized system (at the solution from coarse

mesh) on a fine mesh. The two-grid method can be found in the works of Xu [22,23], Chen et al. [24], He et al. [25–27], Zhang

and He [28], Shang [29], Huang et al. [30], Weng et al. [31] and etc.

In this paper we combine the two-grid method with the variational multiscale method for solving the two-dimensional steady

convection diffusion problem based on the locally stabilized method with Gaussian quadrature rule. The remainder of this paper

is organized as follows. In Section 2, a variational multiscale finite element method is introduced. The two-grid method is given

in Sections 3. In Section 4, numerical experiments are given to validate the theoretical results.

The standard Sobolev space Wm, p(�) is equipped with a norm ‖·‖m, p. For p = 2, let Hm(�) = W m,2(�) and write ‖ · ‖m =
‖ · ‖m,2 and ‖ · ‖ = ‖ · ‖0,2. We use the constant C or c to denote a generic positive constant whose value may change from place

to place, but remains independent of the mesh parameter and ε.

2. Variational multiscale finite element method

2.1. Variational formulation of the convection–diffusion problem

Define bilinear forms a( ·, ·), b( ·, ·) and B( ·, ·) on H1
0(�) × H1

0(�) by

a(u, v) = ε(∇u,∇v), b(u, v) = (α · ∇u, v), B(u, v) = a(u, v) + b(u, v).

Then the variational formulation of problem (1)–(2) reads: find u ∈ H1
0
(�) such that

B(u, v) = ( f (u), v), ∀v ∈ H1
0(�). (3)

We assume the nonlinear term f is a locally Lipschitz, monotone function and is bounded up to second order derivative, i.e. for

any t, t1, t2 ≥ 0, t, t1, t2 ∈ R the following conditions

‖ f (t1) − f (t2)‖ ≤ L‖t1 − t2‖, L > 0 (4)

f ∈ C2(R), f ′(t) ≤ 0, | f (t)| + | f
′′
(t)| ≤ C

So that (3) admits a unique solutionu ∈ H1
0(�) (c.f. [16]).

2.2. Variational multiscale finite element method based on two local Gauss integrations

Let Mh ⊆ H1
0(�) be a standard piecewise polynomial finite element defined on � and let uh be the finite element approxima-

tion solution of problem (3), and satisfy

B(uh, vh) = ( f (uh), vh) ∀ vh ∈ Mh. (5)

It is known that the formulation (5) lacks coercivity when ε << |α|, unless the mesh size h is small enough with respect to the

diffusion coefficient ε. The common variational multiscale methods in [21] to stabilize (5) is as follows: let L
h̃

be a vector valued

finite element subspace of [L2(�)]2, to find uh ∈ Mh , P
h̃

∈ L
h̃

satisfying

B(uh, vh) + (ν∇uh,∇vh) − (νP
h̃
,∇vh) = ( f (uh), vh), ∀vh ∈ Mh,

(P
h̃

− ∇uh, I
h̃
) = 0, ∀I

h̃
∈ L

h̃
.

(6)

The second equation in (6) implies that P
h̃

is the L2-orthogonal projection of ∇uh into L
h̃
. The space L

h̃
contains the information

of the coarse scale, and the stabilization parameter ν acts only on the fine scale. The choice of ν is discussed in [21]. The constant
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