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a b s t r a c t

A robust multi-fidelity design optimization methodology has been developed to integrate ad-

vantages of high- and low-fidelity analyses, aiming to help designers reach more efficient

turbine runners within reasonable computational time and cost. An inexpensive low-fidelity

inviscid flow solver handles most of the computational burden by providing data to the op-

timizer by evaluating objective functions and constraint values in the low-fidelity phase. An

open-source derivative-free optimizer, NOMAD, explores the search space, using the multi-

objective mesh adaptive direct search optimization algorithm. A versatile filtering algorithm

is in charge of connecting low- and high-fidelity phases by selecting among all feasible solu-

tions a few promising solutions which are transferred to the high-fidelity phase. In the high-

fidelity phase, a viscous flow solver is used outside the optimization loop to accurately eval-

uate filtered candidates. High-fidelity analyses results are used to recalibrate the low-fidelity

optimization problem. The developed methodology has demonstrated its ability to efficiently

redesign a Francis turbine blade for new operating conditions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

From an energy production perspective, the moving component of a hydraulic turbine, the runner, plays a key role in its

operation. Designing a runner currently relies extensively on the designer’s intuition and experience. Although runner designers

employ CFD tools to evaluate their designs, there is a strong need to integrate more tightly CFD analyses to obtain more automatic

and efficient design processes. A full range of CFD methods has been utilized in the optimization of hydraulic turbine runner

blades; from low-fidelity inviscid models (e.g. using potential flow, Holmes and McNabb [1]) to high-fidelity viscous models (e.g.

using a turbulent RANS solver, Franco-Nava et al. [2]). However none of these methods can, by itself, entirely fulfill industrial

design needs. On one hand, low-fidelity CFD simulations are not accurate enough in their prediction of flow behavior, mainly

due to shortcomings in the physics. On the other hand, high-fidelity CFD analyses cannot be used in the main optimization loop,

since they are too expensive and slow for iterative industrial blade design processes. Surrogate-based optimization approaches

have been employed, whereby computationally inexpensive models are used in lieu of high-fidelity models. These approaches

may be divided into functional and physics-based surrogates. Although functional surrogates have been used for blade shape
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Nomenclature

BL Lower bound of design variables

BU Upper bound of design variables

C Design characteristic

Cμ Turbulent kinetic energy constant

Cɛ1, Cɛ2 Turbulent model constants

C∗ Targeted design characteristic

G Sieving grid size

g Gravity

H Height or head

IObj Indices used for objectives

JCons Indices used for constraints

k Turbulent kinetic energy

kL Relaxation factor of characteristic limit correction

kOP Relaxation factor of operating condition correction

ks Shrinkage factor

kT Relaxation factor of design characteristic correction
⇀
n Wall normal vector

OP Operating point

ÕP Operating point of minimum characteristic

P Pressure

R Cluster radius

RN N-dimensional Euclidean space
⇀
r Radial coordinate vector

Sin Inlet swirl

U Characteristic limit

Ui, Uj, Uk Cartesian mean velocity vectors
⇀

V Velocity vector
⇀

W Relative velocity vector

X State variable

x Cartesian position

Y A set of geometric design variables

Y∗ A set of geometries

y Independent design variable

Z Mapped geometry

Z∗ A set of mapped geometries

z Vertical coordinate in cylindrical system

Greek symbols

ρ Density

ɛ Turbulent dissipation rate

� Angular velocity

∅ Potential function

θ Angle

μ viscosity

μt Turbulent viscosity

σ ɛ, σ k Turbulent model constants

Subscripts

B Selected band of feasible solutions

bc Boundary condition

C Candidate

Cons Constraint

c Cluster

F Feasible

i,j,k,l,m,q,t Counting indices

N Number of design variables



Download	English	Version:

https://daneshyari.com/en/article/1702790

Download	Persian	Version:

https://daneshyari.com/article/1702790

Daneshyari.com

https://daneshyari.com/en/article/1702790
https://daneshyari.com/article/1702790
https://daneshyari.com/

