Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm

CrossMark

S. Bahrami^{a,*}, C. Tribes^a, C. Devals^b, T.C. Vu^c, F. Guibault^b

^a Mechanical Engineering Department, École Polytechnique de Montréal, Montréal, Quebec H3T 1J4, Canada ^b Computer Engineering Department, École Polytechnique de Montréal, Montréal, Quebec H3T 1J4, Canada ^c R&D Division, Andritz Hydro Canada Inc., 6100 TransCanada highway, Point-Claire, Quebec H9R 1B9, Canada

ARTICLE INFO

Article history: Received 31 March 2014 Revised 12 June 2015 Accepted 15 September 2015 Available online 28 September 2015

Keywords: Multi-fidelity Multi-objective optimization Computational fluid dynamic (CFD) Hydraulic turbine blade Mesh adaptive direct search algorithm

ABSTRACT

A robust multi-fidelity design optimization methodology has been developed to integrate advantages of high- and low-fidelity analyses, aiming to help designers reach more efficient turbine runners within reasonable computational time and cost. An inexpensive low-fidelity inviscid flow solver handles most of the computational burden by providing data to the optimizer by evaluating objective functions and constraint values in the low-fidelity phase. An open-source derivative-free optimizer, NOMAD, explores the search space, using the multiobjective mesh adaptive direct search optimization algorithm. A versatile filtering algorithm is in charge of connecting low- and high-fidelity phases by selecting among all feasible solutions a few promising solutions which are transferred to the high-fidelity phase. In the highfidelity phase, a viscous flow solver is used outside the optimization loop to accurately evaluate filtered candidates. High-fidelity analyses results are used to recalibrate the low-fidelity optimization problem. The developed methodology has demonstrated its ability to efficiently redesign a Francis turbine blade for new operating conditions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

From an energy production perspective, the moving component of a hydraulic turbine, the runner, plays a key role in its operation. Designing a runner currently relies extensively on the designer's intuition and experience. Although runner designers employ CFD tools to evaluate their designs, there is a strong need to integrate more tightly CFD analyses to obtain more automatic and efficient design processes. A full range of CFD methods has been utilized in the optimization of hydraulic turbine runner blades; from low-fidelity inviscid models (e.g. using potential flow, Holmes and McNabb [1]) to high-fidelity viscous models (e.g. using a turbulent RANS solver, Franco-Nava et al. [2]). However none of these methods can, by itself, entirely fulfill industrial design needs. On one hand, low-fidelity CFD simulations are not accurate enough in their prediction of flow behavior, mainly due to shortcomings in the physics. On the other hand, high-fidelity CFD analyses cannot be used in the main optimization loop, since they are too expensive and slow for iterative industrial blade design processes. Surrogate-based optimization approaches have been employed, whereby computationally inexpensive models are used in lieu of high-fidelity models. These approaches may be divided into functional and physics-based surrogates. Although functional surrogates have been used for blade shape

* Corresponding author. Tel.: +514 340 5121x5059. E-mail address: salman.bahrami@polymtl.ca (S. Bahrami).

http://dx.doi.org/10.1016/j.apm.2015.09.008 S0307-904X(15)00493-X/© 2015 Elsevier Inc. All rights reserved.

Nomenclature	
Br	Lower bound of design variables
B	Upper bound of design variables
C	Design characteristic
C_{μ}	Turbulent kinetic energy constant
$C_{\varepsilon 1}$, $C_{\varepsilon 2}$	Turbulent model constants
C*	Targeted design characteristic
G	Sieving grid size
g	Gravity
H	Height of head
I _{Obj}	Indices used for constraints
k	Turbulent kinetic energy
k _i	Relaxation factor of characteristic limit correction
k _{OP}	Relaxation factor of operating condition correction
ks	Shrinkage factor
k _T	Relaxation factor of design characteristic correction
n	Wall normal vector
OP	Operating point
OP	Operating point of minimum characteristic
P	Pressure Cluster radius
R ^N	N-dimensional Fuclidean space
	Radial coordinate vector
Sin	Inlet swirl
U	Characteristic limit
U _i , U _i , U _k	Cartesian mean velocity vectors
v	Velocity vector
Ŵ	Relative velocity vector
x	State variable
х	Cartesian position
Y	A set of geometric design variables
Y*	A set of geometries
У	Independent design variable
Z 7*	Mapped geometry
2 7	Vertical coordinate in cylindrical system
L	vertical coordinate în cymerical system
Greek symb	pols
ρΙ	Density
а О	furbulent dissipation rate
32 A	Aliguial velocity
θ	Angle
μ	viscosity
μ_t 1	Furbulent viscosity
$\sigma_{\varepsilon}, \sigma_k$	Furbulent model constants
Subscripts	
B	Selected band of feasible solutions
bc	Boundary condition
С	Candidate
Cons	Constraint
C	Cluster
F iiklaset	reasible
1,J,K,1,111,Q,T N	Counting mulles Number of design variables
1 4	

Download English Version:

https://daneshyari.com/en/article/1702790

Download Persian Version:

https://daneshyari.com/article/1702790

Daneshyari.com