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a b s t r a c t

In a recent article (2013), Li et al. [1] approximate minimal surfaces from geodesic boundaries,

with applications to garment design in mind. We go over this work and existing methods for

constructing minimal surfaces from geodesics. First, we justify why minimal surfaces and the

problem of finding the surface with minimal area (i.e., solving Plateau’s problem) have little

to do with garment design. Second, we recall that Plateau’s problem makes little sense for

boundaries such as those considered in [1], composed of unclosed curves of finite length or

disconnected pieces of them (with no other positional restriction). Finally, we note that the

construction of a minimal surface (with zero mean curvature) from a prescribed geodesic is

a particular instance of a classical problem in differential geometry, already solved by Björ-

ling. In particular, for a geodesic circle or helix the resulting minimal surfaces are well-known

(catenoid and helicatenoid, respectively), so no approximations are required.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The constrained construction of parametric surfaces from one or more prescribed geodesics has received ample attention in

recent literature. A key motivation behind this research is garment design, where a given model and size is characterized by a

curve, called girth (Fig. 1), that the designer must preserve [2]. When the fabric or leather is flattened, it is convenient that the

girth be a geodesic to minimize distortion [3]. Furthermore, shoemakers naturally employ geodesics to cut patterns [4]. In a sem-

inal work, Wang et al. [2] show how to define a pencil of surfaces having a geodesic as isoparametric curve (i.e., an isogeodesic).

This work has been extended to the case of a rational pencil [5], and polynomial surfaces from Bézier isogeodesics [6,7]. Another

motivation for the research on surfaces from isogeodesics is the development of a certain ribbon with embedded micro-sensors

[8–12]. When a ribbon is placed tight on a surface, it naturally follows a geodesic, as sketched in Fig. 2, since it tries to minimize

the distance. Given a physical surface, the aforementioned ribbon with micro-sensors provides tangential information that can

be employed for reconstruction purposes, furnishing an innovative alternative to traditional scanning methods, which only cap-

ture positional data. On the other hand, finding surfaces with minimal area under a boundary constraint is a classical problem

in differential geometry [13,14]. Since minimal surfaces display remarkable properties, they find numerous applications in CAD,

especially in architectural design [15] and aesthetic engineering [16].

In principle, the idea of combining minimal surfaces and geodesic boundaries may appear attractive. Thus, in a recent article

Li et al. [1] tackle the approximation of minimal surfaces from geodesics, for applications in garment and shoe design, in order

to minimize material consumption. We examine this construction and alternative methods for defining minimal surfaces from

geodesic boundaries. First, a closer look at the problem (Section 2) reveals that the minimum area constraint makes little sense

in the context of clothing design. In Section 3 we note that, for a boundary composed of disconnected unclosed curves of finite
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Fig. 1. Examples of girth curves for garment design.

Fig. 2. Geodesic as the trajectory followed by a tight ribbon on a surface.

length, it has neither sense to find a surface with minimal area (as in several examples in [1]), because the lower bound of the

area for surfaces having the prescribed boundary is precisely zero. Then, in Section 4, we analyze the geodesic condition along

a boundary, and then recall (Section 5) that the construction of a minimal surface containing a given geodesic is a particular

instance of the so-called Björling’s problem. In particular, in Section 6 we observe that the minimal surfaces from a prescribed

geodesic circle or a helix are well-known. Finally, conclusions are drawn in Section 7.

2. Minimal surfaces: physical interpretation and applications

Given a simple closed boundary Γ , finding the surface with minimal area is called Plateau’s problem [17,18]. Such minimal

surfaces correspond to the shape assumed by thin soap films spanning Γ , as long as the air pressure at both sides of the film

is the same. Experimentally, minimal surfaces can be generated by twisting a wire following the contour Γ , then dipping it

into a soap solution and carefully removing the wire. For an excellent and accessible introduction to the fascinating subject of

minimal surfaces and their physical interpretation, the reader is addressed to the beautifully illustrated book by Hildebrandt and

Tromba [19].

If we disregard the negligible weight of the film, according to Laplace’s equation the pressure difference between the sides

of a soap film is proportional to its mean curvature H (i.e., the arithmetic mean of the principal curvatures κ1, κ2). Therefore,

minimal surfaces display necessarily a vanishing mean curvature everywhere:

H = 1

2
(κ1 + κ2) = 0. (1)

Two important remarks regarding the condition above:
• It is necessary, but not sufficient, for a surface to globally minimize area. There exist surfaces that do not globally minimize

the area in a Plateau’s problem and yet satisfy (1), although in practice they would be unstable and hence not obtainable as

soap films.

• Nevertheless, condition (1) is necessary and sufficient to locally minimize area, i.e., so that each point on the surface has a

neighborhood with least-area relative to its boundary. Thus, it has become customary [19] to denominate minimal all surfaces

with vanishing H, a convention that will be followed throughout this paper.

Minimal surfaces can be materialized with thin membranes, carrying only tension and no compression or bending. These

tensile structures find remarkable applications in architecture, as tents and lightweight roofs, since they can span large distances
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