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a b s t r a c t 

This paper is devoted to simultaneous determination of the strain hardening exponent, 

the shear modulus and the elastic stress limit in an inverse problem. The inverse problem 

consists of determining the unknown coefficient f = f (T 2 ) , T 2 := |∇u | 2 in the nonlinear 

equation u t − ∇ . 
(

f (T 2 ) ∇ u 
)

= 2 t, (x, y, t) ∈ �T := � × (0 , T ) , � ⊂ R 

2 , by measured out- 

put data (or additional data) given in the integral form. After we solve direct problem us- 

ing a semi-implicit finite difference scheme, a numerical method based on discretization of 

the minimization problem, steepest descent method and least squares method is proposed 

for the solution of the inverse problem. We use Tikhonov regularization to overcome the 

ill-posedness of the inverse problem. Numerical examples with noise free and noisy data 

illustrate applicability and accuracy of the proposed method to some extent. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

According to the deformation theory of plasticity, stress–strain relation between deviators is described by the Hencky 

correlation 

σ D 
i j = 2 g(�2 ) εD 

i j , i, j = 1 , 2 , 3 . 

Then the following relation holds between the intensities of shift strain �:= 
(

2 εD 
i j 
εD 

i j 

) 1 
2 and tangential stress T := 

(
1 
2 
σ D 

i j 
σ D 

i j 

) 1 
2 

T = g 
(
�2 

)
�, (1.1) 

where the function g ( �2 ) describes the elastoplastic properties of the material and is sometimes called the modulus of 

plasticity. Eq. (1.1) can be formally regarded as a general condition encompassing different phases strain. Thus, putting 

g 
(
�2 

)
= 

τs 
�

, we obtain the Von Mises’s criterion T = τs ; while putting g 
(
�2 

)
= G, we obtain the case of Hooke’s elastic 

medium, where T = G � and G = E/ (2(1 + ν)) is the modulus of rigidity (shear modulus), E > 0 is the Young’s modulus, 

ν∈ 
(
0 , 1 

2 

)
is the Poisson coefficient. The shear modulus is defined as the ratio of shear stress to the shear strain. It describes 
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Nomenclature 

g modulus of plasticity 

G modulus of rigidity (shear modulus) 

E Young’s modulus 

ν Poisson coefficient 

F class of admissible coefficients 

� cross section of a bar 

∂� boundary of �

ϕ angle of twist per unit length 

T 2 := | ∇u | 2 stress intensity 

u ( x, y ) Prandtl stress function 

T 0 
2 := max x ∈ �| ∇u | 2 elastic stress limit 

M theoretical value of the torque 

M measured value of the torque 

T final time 

〈 ., . 〉 inner product 

‖ . ‖ ∞ 

maximum norm 

‖ . ‖ 2 L 2 norm in �

L 2 ( �) set of square integrable functions on �

J ( f ) cost functional 

τ time step 

w h uniform mesh 

h 1 mesh step in x direction 

h 2 mesh step in y direction 

N 1 number of mesh points in x direction 

N 2 number of mesh points in y direction 

N number of measurements 

u exact solution 

u h approximate solution 

u 0 initial approximation 

ɛ u h absolute error 

O (.) Landau’s symbol 

δu h relative error 

κ strain hardening exponent 

T transpose of a matrix 

∇ gradient 

λ regularization parameter 

ε stopping criterion 

q number of points in t direction 

h differential step for κ
k differential step for G 

m differential step for T 0 
2 

an object’s tendency to shear when acted upon by opposing forces. Also it is used to determine how elastic or bendable 

materials evolve if they are sheared, which is being pushed parallel from opposite sides. The Poisson coefficient for some 

materials such as aluminum, bronze, copper, ice, magnesium, molybdenum, monel metal, nickel silver are 0.334, 0.34, 0355, 

0.33, 0.35, 0.307, 0.315, 0.322 respectively. Since the Poisson coefficient of the aforementioned materials are around 0.3, it 

is assumed to be 0.3 throughout this paper. We note that changing of this value affect numerical results but does not affect 

the applicability and efficiency of the method given in Section 3 . 

According to the deformation theory of plasticity, the function g ( �2 ) satisfies the following conditions [1] : 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

c 1 ≤ g(�2 ) ≤ c 2 , 

g(�2 ) + 2 g ′ (�2 )�2 ≥ c 3 > 0 , ∀ �2 ∈ 

[
�∗

2 
, �∗2 

]
, 

g ′ (�2 ) ≤ 0 , 

∃ �0 
2 ∈ ( �∗

2 
, �∗2 ) : g(�2 ) = G, ∀ �2 ∈ 

[
�0 

2 
, �∗2 

]
, 

(1.2) 
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