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a b s t r a c t 

A Bayesian framework is developed for characterizing the unknown parameters of prob- 

abilistic models for material properties. In this framework, the unknown parameters are 

viewed as random and described by their posterior distributions obtained from prior in- 

formation and measurements of quantities of interest that are observable and depend on 

the unknown parameters. The proposed Bayesian method is applied to characterize an un- 

known spatial correlation of the conductivity field in the definition of a stochastic trans- 

port equation and to solve this equation by Monte Carlo simulation and stochastic reduced 

order models (SROMs). The Bayesian method is also employed to characterize unknown 

parameters of material properties for laser welds from measurements of peak forces sus- 

tained by these welds. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Material properties at the fine scale vary randomly in space, e.g. , microstructural conductivity and mechanical properties 

of weld fusion zones. Mechanical systems are often subjected to actions that vary randomly in space and time, e.g. , pres- 

sure on the skin of aircrafts and features of most biological tissues. The determination of the response of these materials 

and systems involves solutions of equations with random coefficients, input, and end conditions, referred to as stochastic 

equations. 

Monte Carlo simulation is the only general method for solving stochastic equations irrespective of their complexity. How- 

ever, its use in applications encounters two obstacles. First, the method is computationally unfeasible if the time for calculat- 

ing a single solution sample is excessive, especially when many samples are needed to construct reliable solution statistics. 

Second, the implementation of the method requires full probabilistic characterization of the random entries of these equa- 

tions, which may not be available in many applications. This paper addresses the first concern by application of stochastic 
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reduced-order models (SROMs) and it addresses the second through development of a Bayesian method for characterizing 

unknown parameters of material models. 

It is assumed that the probability laws of the random entries of a stochastic equation have known functional forms but 

some of their parameters are unknown and unobservable, e.g. , parameters of spatial correlations of random field mod- 

els for material microstructures. We develop a Bayesian framework in which the unknown parameters are viewed as 

random variables. The initial information on the unknown parameters is captured by prior distributions. Measurements 

of quantities of interest that are generated numerically and that depend on these parameters are used to update the 

prior distributions. Updated distributions, referred to as posterior distributions, summarize all available information on 

the unknown parameters. Stochastic equations depending on unknown parameters characterized by posterior distributions 

are hierarchical. They are classical stochastic equations that can be solved by existing methods if conditioned on these 

parameters. 

We are not alone in employing a Bayesian framework in a mechanics application to inform a model with uncertain 

parameters. Applications span from heat conduction, to structural health monitoring, to structural dynamics, and include 

damage of composite materials such as concrete and fiber reinforced structures. Wang and Zabaras used a Bayesian ap- 

proach for inverse heat conduction problems to ascertain uncertain material properties and boundary conditions [1] . Beck 

and Yuen use the approach to choose a class of models based on system response data for structural reliability applications 

[2] . Similarly, Grigoriu and Field use a Bayesian approach for model selection in a frame validation round-robin challenge 

problem [3] . Bogdanor et al . use a Bayesian approach to introduce uncertainty in initial material defects for multiscale mod- 

eling of failure in composites [4] . Vanik et al . use modal data to update model stiffness parameters for structural health 

monitoring [5] . Simeon et al. describe a Bayesian inference approach to model updating for material parameters in a rein- 

forced concrete beam that used modal predictions and measurements to account for model and measurement uncertainty 

[6] . 

This is only a very brief survey of the literature and there are a multitude of other articles discussing the application of 

Bayes’ theorem to mechanics problems that are naturally awash with uncertainty. In our work, we introduce the following 

novelties. First, the unknown model parameters are not observable and they need to be inferred from material properties 

at different scales, e.g. , the correlation parameter λ in the first example is inferred from measurement of apparent conduc- 

tivity. Moreover, when our method is applied to an engineering problem with two variables simultaneously, we discover 

an unexpected non-uniqueness and we develop an explanation. Second, surrogate models based on SROMs [7] are used to 

solve stochastic differential equations (SDE) rather than brute force Monte Carlo simulation or approximate methods that 

cannot capture sample properties. 

The essentials of the proposed method are outlined in the following section. The method is applied in subsequent sec- 

tions to solve two stochastic problems. The first is a one-dimensional transport equation with random conductivity whose 

spatial correlation depends on an unknown parameter. Measurements of apparent conductivity are used to construct poste- 

rior distributions for the unknown correlation parameter. The second is a laser weld problem whose performance depends 

on various mechanical properties, some of which are assumed to be unknown. Measurements of peak weld loads are used 

to construct posterior distributions for these parameters. 

2. Bayesian method 

Suppose the probability laws of the random entries of a stochastic equation are defined up to a set of unknown param- 

eters that are collected in a vector λ. Conditional on λ, the equation is a classical stochastic equation and can be solved by 

existing methods, e.g. , Monte Carlo simulation. It is assumed that λ cannot be observed directly. Quantities of interest that 

are observable and depend on λ are used to characterized this vector. 

We develop a Bayesian framework for characterizing λ. In this framework λ is viewed as a random vector denoted by 

�. Information on the distribution of � is used to construct a prior density f ′ ( λ). If only the range of � is known, f ′ ( λ) is 

assumed to be uniform in this range. Since λ is unobservable, quantities of interest that can be measured and depend on λ
are used to update f ′ ( λ) from: 

f ′′ (λ) ∝ f ′ (λ) � (λ | data ) , (1) 

where f ′ ′ ( λ) is the posterior density of �, � ( λ| data) denotes the likelihood function of � corresponding to measurements 

of the selected quantity of interest, and the symbol ∝ means the ratio of the left- and right-hand sides of Eq. (1) is 

constant. 

In this framework, the original stochastic equation becomes a hierarchical stochastic equation that can be solved in two 

steps. First, independent samples { λi } of � are generated from its posterior density f ′ ′ ( λ). Second, solutions of the stochastic 

equation conditional on { � = λi } can be obtained by existing methods for solving stochastic equations [7–13] . They can be 

subsequently used to find unconditional solution statistics. In Section 3 , we illustrate the full implementation of this method 

for solving stochastic equations with uncertain parameters and develop statistics of quantiles of interest using Monte Carlo 

simulation and stochastic reduced-order models (SROM). In Section 4 , we apply the Bayesian framework to a problem of 

practical relevance. 



Download	English	Version:

https://daneshyari.com/en/article/1702855

Download	Persian	Version:

https://daneshyari.com/article/1702855

Daneshyari.com

https://daneshyari.com/en/article/1702855
https://daneshyari.com/article/1702855
https://daneshyari.com/

