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a b s t r a c t 

Sensitivity analysis evaluates how the variations in the model output can be apportioned 

to variations in model inputs. After several decades of development, sensitivity analysis of 

independent inputs has been developed very well, with that of correlated inputs receiv- 

ing increasing attention in recent years. This paper introduces a new sensitivity analysis 

technique for model with correlated inputs. The new method allows us to quantitatively 

distinguish the effects of the correlated and uncorrelated variations of the model inputs 

on the uncertainty in model output. This is achieved by performing covariance decompo- 

sition for the uncertainty contribution of the inputs after decoupling the correlated and 

uncorrelated parts of the component functions in the high dimension model representa- 

tion (HDMR) of the output. The proposed method can be implemented conveniently with 

any existing HDMR technique developed for independent inputs without any change of 

the original algorithm. It can be applied to nonlinear and non-monotonic models with 

correlated inputs. An additive model, two non-additive models with analytical sensitivity 

indices, and a riveting process model are employed to test the proposed method. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Sensitivity analysis evaluates how the variations in the model output can be apportioned to variations in model inputs 

[1] . After several decades of development, sensitivity analysis of independent inputs has been developed very well [2–6] , 

whereas sensitivity analysis techniques for model with correlated inputs are few in the literature [7–17] . Mckay [7] proposed 

a replicated Latin hypercube sampling technique (r-LHS) to compute the marginal contribution of the correlated inputs to 

the response variance, which was applied to the Level E model with correlated inputs in a variance reduction setting [8] . 

Iman et al. [9] proposed the partial correlation coefficient as a measure of parameter sensitivity for models with correlated 

inputs based on Latin hypercube sampling [9,10] , which was then extended by Xu and Gerner [11] to the random balance 

design technique [12] . They showed that the extended method outperformed r-LHS in terms of computational cost as it only 

requires one single sample set. Then, in a second article Xu and Gerner proposed a regression-based method to divide the 

contribution to the uncertainty in the model output by an individual correlated input into the correlated contribution and 

the uncorrelated one [13] . This allows identifying the spurious inputs which have an impact on the model output only due 

to their strong correlations with the other significant ones. However, their method is only suitable for linear models, which 

is then extended by Hao and Li et al. [14,15] to the nonlinear case. 
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The aforementioned sensitivity analysis techniques for correlated inputs consider only the first order contribution of the 

inputs, whereas interaction often plays an important role in the uncertainty contribution of the inputs. Li et al. [17] proposed 

a random sampling high dimensional model representation (RS-HDMR) method to divide the contribution by an individual 

or a set of correlated inputs into correlative contribution and structural one. This allows considering the contribution by the 

interaction of the correlated inputs to the uncertainty in the model output. Yet, the effectiveness of this method relies on the 

uniqueness of the HDMR of the correlated inputs which is usually a thorny problem to deal with. Mara and Tarantola [18] 

derived a set of variance-based sensitivity indices that can measure the marginal and total contributions of an individual 

correlated input to the output variance. The definition of their sensitivity indices relies on a specific orthogonalisation of the 

inputs and ANOVA-representations of the model output. Therefore, to estimate all the sensitivity indices of the correlated 

inputs, one has to test n ! ( n is the number of the inputs) different orderings of the inputs and estimate the sensitivity 

indices for each of these orders. 

Our objective in this work is to propose a new sensitivity analysis technique for model with correlated inputs, which can 

separate the correlated and uncorrelated contributions by the inputs to the variance of the model output, including both 

the individual and interaction contribution of the inputs. This is achieved by decorrelating the component functions of the 

inputs in the HDMR of the output, and then performing covariance decomposition for the uncertainty contribution of the 

inputs. We will show that the newly defined sensitivity indices allow correctly identifying the variance contribution of the 

correlated inputs without specific restriction on the form of the model. Furthermore, their estimation is simple and can be 

easily achieved by any existing HDMR technique. 

The paper is organized as follows. In Section 2 we briefly recall the theory of variance-based sensitivity analysis for model 

with independent variables. We detail the new method and newly defined sensitivity indices for model with correlated 

inputs in Section 3 . In Section 4 , we discuss the computational issue and provide a general procedure for estimating the 

defined sensitivity indices. An additive model, two non-additive models with analytical sensitivity indices are employed to 

test the reliability of the proposed method in Section 5 . In Section 6 , the proposed method is applied to a riveting process 

model. Section 7 discusses some issues associated with the proposed method, and Section 8 presents conclusions. 

2. Review of variance-based sensitivity analysis 

Given a model of the form Y = g(X ) , with Y a scalar output and X = ( X 1 , X 2 , ..., X n ) input vector, variance-based sensi- 

tivity analysis is closely related to the decomposition of the function g(X ) itself into terms of increasing dimensionality (i.e. 

HDMR) [2] , 

g = g 0 + 

∑ 

i 

g i + 

∑ 

i 

∑ 

j>i 

g i j + . . . + g 12 ... n (1) 

where 

g 0 = 

∫ 
g(X ) 

n ∏ 

k =1 

f X k ( x k )d x k 

g i = g i ( X i ) = 

∫ 
g(X ) 

n ∏ 

k =1 ,k � = i 
f X k ( x k )d x k − g 0 

g i j = g i j ( X i , X j ) = 

∫ 
g(X ) 

n ∏ 

k =1 ,k � = i, j 

f X k ( x k )d x k − g i ( X i ) − g j ( X j ) − g 0 

... (2) 

For the independent inputs, all the component functions in Eq. (1) are mutually orthogonal, and the decomposition is 

unique which leads to the unique decomposition of the unconditional variance as follows [2] , 

V ( Y ) = 

∑ 

i 

V i + 

∑ 

i 

∑ 

j>i 

V i j + · · · + V 12 ... n (3) 

where 

V i = V [ g i ] = V [ E ( Y | X i ) ] 

V i j = V 

[
g i j 

]
= V 

[
E 
(
Y | X i , X j 

)]
− V i − V j 

... (4) 

Here V i is the marginal variance (main effect) of X i which measures the amount of the variance of Y explained by X i alone, 

V 
i j 

is the cooperative fractional variance of { X i , X j } that measures the amount of the variance explained by the interaction 

between X i and X j and so on. The total variance of X i is defined as the sum of all fractional variance containing the factor 

X i , i.e. 

V 

T 
i = V i + 

∑ 

i ∈ u ⊆{ 1 , 2 ,...,n } 
V u (5) 
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