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a b s t r a c t 

The exponentiated exponential distribution is one of the most seminal distributions of the 

20th century. Here, we propose a discrete exponentiated exponential distribution. We derive 

its mathematical properties and procedures for estimation by common methods. The estima- 

tion procedures are assessed by simulation. Finally, the proposed distribution is compared 

with one of the most recent discrete distributions using two real data sets on insurance. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

Discrete distributions arise naturally in insurance as models for claim counts. However, traditional discrete distributions like 

the geometric, negative binomial and Poisson distributions are not flexible enough. Some new discrete distributions have been 

proposed recently as flexible models in insurance. These new distributions are often taken to be discrete versions of well known 

continuous distributions. 

One of the most seminal continuous distributions introduced in the 20th century is the exponentiated exponential distri- 

bution [1] . The exponentiated exponential distribution is most seminal in that it has inspired the development of many other 

distributions, including other exponentiated type distributions, beta exponentiated type distributions due to Eugene et al. [2] , 

gamma type distributions due to Zografos and Balakrishnan [3] , Kumaraswamy type distributions due to Cordeiro and Castro 

[4] , beta extended type distributions due to Cordeiro et al. [5] , gamma type distributions due to Risti ́c and Balakrishnan [6] , 

exponentiated Kumaraswamy type distributions due to Lemonte et al. [7] , and so on. 

The exponentiated exponential distribution has also received widespread applications. Its applications have included: mod- 

els to determine bout criteria for analysis of animal behavior, design rainfall estimation in the Coast of Chiapas, analysis of Los 

Angeles rainfall data, software reliability growth models for vital quality metrics, models for episode peak and duration for eco- 

hydro-climatic applications, estimating mean life of power system equipment with limited end-of-life failure data, and cure rate 

modeling. For a comprehensive account of mathematical properties and applications of the exponentiated exponential distribu- 

tion, we refer the readers to Nadarajah [8] . 

Let N 1 , N 2 , . . . , N α denote independent claim counts of α different insurance companies. Assume that each N i is a geometric 

random variable with parameter θ . Let X = max (N 1 , N 2 , . . . , N α) denote the maximum claim amount. The cumulative distribu- 

tion function of X is 
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F (x) = P (max (N 1 , N 2 , . . . , N α) ≤ x ) = P (N 1 ≤ x, N 2 ≤ x, . . . , N α ≤ x )

= P (N 1 ≤ x )P (N 2 ≤ x ) · · · P (N α ≤ x ) = [ P (N 1 ≤ x )] 
α

= 

[
1 − (1 − θ)x 

]α
(1) 

for 0 < θ < 1, α > 0 and x = 0 , 1 , 2 , . . . . We shall refer to X as an exponentiated geometric random variable and its distribution as 

the exponentiated geometric distribution. 

The corresponding probability mass and survival functions are 

p(x) = F (x) − F (x − 1 ) = 

[
1 − (1 − θ)x 

]α −
[
1 − (1 − θ)x −1 

]α
(2) 

and 

S(x) = 1 − F (x) = 1 −
[
1 − (1 − θ)x 

]α
, (3) 

respectively, for x = 1 , 2 , . . . and for x = 0 , 1 , 2 , . . . , respectively. The corresponding failure rate function is 

h(x) = 

p(x)

S(x)
= 

[
1 − (1 − θ)x 

]α −
[
1 − (1 − θ)x −1 

]α

1 −
[
1 − (1 − θ)x 

]α (4) 

for x = 1 , 2 , . . . . The probability mass function in (2) is useful for maximum likelihood estimation of the parameters θ and α, see 

Section 3.2 . The survival function in (3) is useful for censored maximum likelihood estimation of the parameters θ and α, see 

Section 3.4 . The failure rate function in (4) assesses the ability of the distribution to model failure times, see Section 2.2 . 

Note that p(1 ) = θα, p(∞ ) = 0 , h(1 ) = θα/ (1 − θα) and h(∞ ) = θ/(1 − θ). A particular case of (1) for α = 1 is the geometric 

distribution. 

Having closed form expressions for its cumulative distribution and failure rate functions is an attractive feature of the expo- 

nentiated geometric distribution. Poisson, binomial, or the negative binomial distributions do not have closed form expressions 

for their cumulative distribution and failure rate functions. 

The exponentiated geometric distribution appears to be new. However, Jiang ( [9] , Section 3.2.2) mentions briefly some shape 

properties of the exponentiated geometric distribution. We are aware of no other papers in the literature, where the exponenti- 

ated geometric distribution has been studied in a statistical sense. 

The rest of this note is organized as follows. Various mathematical properties of (1) are derived in Section 2 . Estimation pro- 

cedures by two common methods are derived in Section 3 . Applications involving insurance data sets are discussed in Section 4 . 

2. Mathematical properties 

The mathematical properties of the exponentiated geometric distribution derived are: expansions ( Section 2.1 ), shape prop- 

erties ( Section 2.2 ), quantile function ( Section 2.3 ), probability generating function ( Section 2.4 ), moment generating function 

( Section 2.4 ), moments ( Section 2.5 ), order statistics ( Section 2.6 ) and distribution of range ( Section 2.7 ). 

Some of the given expressions involve infinite series: namely, (6), (7), (9), (10), (13) and (14) . Extensive computations not 

reported here showed that the relative errors between (6), (7), (9), (10), (13) and (14) and their versions with the infinite series 

in each truncated at 20 did not exceed 10 −20 . This shows that (6), (7), (9), (10), (13) and (14) can be computed for most practical 

uses with their infinite sums truncated at 20. The computations were performed using Maple. Maple took only a fraction of a 

second to compute the truncated versions of (6), (7), (9), (10), (13) and (14) . The computational times for the truncated versions 

were significantly smaller than those for the untruncated versions. 

2.1. Expansions 

Some of the mathematical properties of (1) –(4) cannot be expressed in closed form. In these cases, it is useful to have expan- 

sions for the probability mass and cumulative distribution functions. Using the binomial expansion 

(1 + a )
α = 

∞ ∑ 

j=0 

(
α

j 

)
a j , (5) 

we can express (1) and (2) as 

F (x) = 

[
1 − (1 − θ)x 

]α = 

∞ ∑ 

j=0 

(
α

j 

)
( − 1 ) j (1 − θ)x j (6) 

and 
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