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a b s t r a c t

Due to its ability to explain size effects on a small length scale by considering additional

degrees of freedom, micropolar theory is preferred for describing media with complex mi-

crostructures such as soil, composite materials, granular and powder-like materials, masonry,

bones, and liquid crystals. In this study, a theoretical model is presented to investigate the

response of a moving load on a micropolar half-space with irregularity. We obtain the closed-

form expressions for normal stress, shear stress, and tangential couple stress. The effects of

friction, microstructure, and irregularity in the medium are studied by introducing the fric-

tional coefficient (R), coupling factor (N), and irregularity factor (x/a). We discuss the effects

of varying the half-space depth and irregularity on the stresses. Two different cases of irregu-

larity are compared, i.e., rectangular and parabolic.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The theoretical response of a moving load on a half-space has been investigated frequently in the past. This type of study

is useful for modifying different models such as bridges, railways, beams subjected to pressure waves, and piping systems sub-

jected to two-phase flow. The main reason for studying this problem with a micropolar medium is related to the technological

and geophysical conditions. The classical theory of elasticity explains the behavior of these materials, which are considered as

a continuum in the mathematical sense, such as steel, aluminum, concrete, and coal, but it is not suitable for explaining the

behavior of materials such as polymers, cellular solids, and crystals with microstructures. In particular, this theory does not

explain discrepancies that occur with elastic vibrations at a high frequency and small wavelengths. Thus, it is necessary to de-

velop size-dependent consistent continuum mechanics to analyze the behavior of materials on a microscale and to explain the

macroscale behavior. Voigt [1] first tried to eliminate the shortcomings of the classical theory of elasticity by assuming that the

interaction between two particles in a body through an area element within a material is transmitted by the force vector but

also by a couple (moment) vector, which gives rise to couple stresses in elasticity. However, the complete theory of asymmetric

elasticity was developed by Cosserat and Cosserat [2], who assumed that the body comprises interconnected particles in the

form of small rigid bodies and deformation of the medium is described by the displacement vector as well as by the independent

rotation vector. Furthermore, Eringen [3] generalized the classical theory of elasticity by considering that the directors are rigid

and that there are three rotational degrees of freedom in addition to the three classical displacement degrees of freedom. Ere-

meyev et al. [4] presented elastic variants of the micropolar theory in a modern version. Altenbach and Eremeyev [5] highlighted
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Fig. 1. Geometry of the problem.

the three-dimensional Cosserat type model and its suitability for describing complex media such as micro-inhomogeneous ma-

terials, polycrystalline and cellular solids, foams, lattices, masonries, particle assemblies, magnetic rheological fluids, and liquid

crystals. Recently, Altenbach and Eremeyev [6] studied the strain rate tensors and constitutive equations for inelastic micropolar

materials.

In the classical theory of elasticity, the steady state response of a moving load in an elastic half-space has been discussed

several times. In particular, Sneddon [7] outlined the stress produced by a pulse of pressure moving along the surface of a semi-

infinite solid. The steady state solution to the problem of a moving load over an elastic half space was provided by Cole and Huth

[8]. Mukherjee [9] traced out the stresses that develop in a transversely isotropic elastic half-space due to a normal moving load

over a rough surface. The problem of a uniformly moving load on a layered half-plane was discussed by Sackman [10]. Miles

[11] determined the response of a layered half-space to a moving load. A moving load on a plate resting on an elastic half-space

was studied by Achenbach et al. [12] while a moving load on a pre-stressed plate resting on a fluid half-space was analyzed by

Chonan [13]. Ungar [14] detected the wave generated in an elastic half-space by a normal point load moving uniformly over the

free surface. Later, Olsson [15] provided a note on the fundamental moving load problem. The dynamic response of a cracked

beam subject to a moving load was examined by Lee and Ng [16], after which Alkeseyeva [17] emphasized the dynamics of an

elastic half-space under the action of a moving load. Mukhopadhyay [18] delineated the stress produced by a normal moving

load over a transversely isotropic layer of ice lying on a rigid foundation, whereas Selim [19] determined the static deformation

of an irregular initially stressed medium. Chattopadhyay and Saha [20] described the dynamic response of a normal moving

load in the plane of symmetry of a monoclinic half space. Later, Chattopadhyay et al. [21] determined the stresses produced on

a rough irregular isotropic half-space due to a normal moving load. Recently, some notable studies have dealt with irregularity,

including [22], Chattopadhyay and Singh [23], and Chattopadhyay et al. [24]. The steady response of a moving load in micropolar

solid media was discussed by Ghosh [25]. In addition, Kumar and Gogna [26], and Kumar and Deswal [27] studied the steady

state response to moving loads in the micropolar theory of elasticity. However, no previous attempt has been made to study the

dynamic response of a moving load on a micropolar half-space with irregularity.

The study of a moving load with different irregularities is of great importance to seismologists and geophysicists for under-

standing and predicting the behavior of media at different margins of the earth, which motivated the present study. Thus, we

consider the stresses produced in an irregular micropolar half-space due to a normal moving load on a free surface. For compar-

ative purposes, we analyze the cases with rectangular and parabolic irregularity in a micropolar half-space without irregularity.

We investigate the effects of depth, the irregularity factor, maximum irregularity depth, and the coupling factor on stresses,

which we depict graphically.

2. Formulation of the problem

We consider a normal moving load F in a micropolar half-space with parabolic irregularity, which is independent of y and

moving with a constant velocity V in the direction of the positive x-axis. The x-axis is chosen as the direction of the moving load

and y-axis moves vertically downward. The origin is placed at the middle point of the span of the irregularity, as shown in Fig. 1.

The equation of the upper interface containing the irregularity is

y = εh(x), (1)
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