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a b s t r a c t

This paper presents an investigation of the stability and well-posedness of a rate-dependent

damage model for brittle materials. The model is based on the response of an ensemble of

distributed microcracks under a general, three-dimensional state of stress. The stability and

well-posedness of the model are studied by examining the behavior of dynamic perturbations

to the steady-state solution of uniaxial-stress loading. It is shown that as a result of incorpo-

rating the strain-rate effect in the model, perturbations of all wave lengths remain bounded

for finite times, making the problem well-posed. It is also shown that the corresponding rate-

independent model is ill-posed in that perturbations grow unbounded with the wave number,

even for finite times.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Brittle and quasi-brittle materials are encountered in a wide range of applications, including ceramics in modern personnel

and vehicle armor, crystals in polymer-bonded explosives, and concrete (a quasi-brittle material) in construction. In this work

we consider only brittle materials (ceramics in particular) whose mechanical behavior is controlled by the response of cracks in

the materials (in quasi-brittle materials other mechanisms, such as plastic deformation, can also play an important role). Brittle

materials tend to exhibit high compressive strength but low tensile strength. In addition, at low temperatures or high strain

rates some ductile materials can exhibit behavior that can be described as brittle in nature. As a result, modeling the damage

and failure of brittle materials has become increasingly important in order to appropriately design structures containing brittle

materials and to avoid catastrophic failures. Over the last 30 years, multiple models [1–30] have been developed to study the

behavior of brittle materials under dynamic loading. For example, Dubé et al. [1] developed a rate-dependent damage model for

concrete under dynamic loading. Zhang et al. [2] developed an anisotropic model for dynamic damage and fragmentation of rock

under explosive loading. These and many other models are described in a recent review paper by Zhang and Zhao [3].

The models that have been developed range from simple empirical models to micromechanics-based models that provide

more accurate descriptions of material responses. A successful material model needs to be capable of predicting the observed

phenomena of the materials. One phenomenon in brittle materials that has been of a considerable challenge to predict is strain-

softening, which occurs due to accumulation of damage, such as microcracks and voids. This softening response can cause the

Initial-Boundary-Value Problem (IBVP) associated with the model to be mathematically ill-posed if the model does not take

strain-rate or spatially nonlocal effects into account [4]. In this context ill-posedness of an IBVP means that some small differences
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in initial-boundary conditions can lead to grossly different solutions, even for a finite time. Practically speaking, this often leads

to lack of convergence upon mesh refinement in numerical solutions of the Initial-Boundary-Value Problem. Even a well-posed

model for brittle materials tends to exhibit instability. That is, solutions to problems with slightly different initial conditions

diverge over time, but the differences are bounded for finite times. If the model accurately captures the material behavior, then

this can be due to the unstable nature of the brittle material itself. In the current work we will examine the well-posedness and

stability of a particular model for damage in brittle materials, the Dominant Crack Algorithm (DCA) model.

It is the goal of this work to show that the Dominant Crack Algorithm (DCA) model for damage in brittle materials is well-

posed. Furthermore, it captures the instability of the underlying material behavior, resulting in the mathematical instability of

the steady-state solution.

The DCA model, developed by Zuo et al. [5], is a micromechanical model that accounts for strain-rate dependence through

dynamic crack growth. Its theoretical formulation is closely related to that of the Statistical Crack Mechanics model [6] and of

the Isotropic Statistical Crack Mechanics model [7]. The DCA model incorporates anisotropy of damage through the orientation

of the dominant crack. Recently in [8] the model has been expanded to include plasticity for quasi-brittle materials, though that

version of the model is not examined here. The DCA model is relatively simple to implement from a computational perspective,

yet sufficiently robust to capture softening behavior of brittle materials due to crack growth. The model has been implemented

into structural analysis codes and used in engineering applications, hence it seems to be worthwhile to determine whether the

model is mathematically well-posed. If it is, then those using the model can be more confident in its numerical results. If it is

not, the current formulation may have to be abandoned or modified.

Section 2 presents a summary of the key formulations of the DCA model for ease of reference. In Section 3 the stability

and well-posedness of the DCA model are examined through the analysis of small perturbations to a steady-state solution of a

uniaxial stress problem. A detailed numerical example of analysis on silicon carbide (SiC) is presented in Section 4. Section 5

concludes and summarizes this work.

2. Summary of the DCA model

2.1. Damage tensor

In the DCA model the strain in the material is given by [5]

ε = (Cm + D(c))σ, (2.1)

where σ is the applied stress, Cm is the compliance (4th-order tensor) of the matrix (in the current work, Cm is taken as isotropic

and is specified by the bulk and shear moduli). The damage tensor D(c̄) is given by [5]

D(c̄) = βeN0c̄3
(

3

2 − ν
Pd + P+

(
Pd + 5

2
Psp

)
P+

)
, (2.2)

where βe ≡ 64π(1 − ν)/(15G) is a material constant; ν and G are, respectively, the Poisson’s ratio and shear modulus of the

matrix. N0 is the crack number density per solid angle and c̄(t) is the mean crack radius [5]. In the model N0 is kept as a material

constant, and the damage in the material is reflected through the evolution of c̄(t). Pd, Psp and P+ are, respectively, the spherical,

deviatoric and positive projection operators [5].

2.2. Damage evolution

The evolution of the mean crack size c̄(t) is given by [5]

˙̄c

ċmax
= 1 − 1

1 +
〈
F(σ, c̄)

〉 , (2.3)

where F(σ, c̄) is the damage function and the angled bracket is the Macaulay bracket and the maximum growth rate ċmax is the

terminal speed for crack growth (see [5] for details).

The expressions for F(σ, c̄) under a general stress state were given previously [5]. In the current work, we focus on uniaxial-

stress tension where the damage surface reduces to that of the Rankine maximum tensile criterion for brittle materials:

F(σ, c̄) = σ1

σcr(c̄)
− 1

σcr(c̄) ≡
√

π

1 − ν

Gγ

c̄
(2.4)

where σ 1 > 0 is the uniaxial stress in the material, γ is the effective surface energy of the material, and σcr(c̄) is the tensile

strength of the material, which decreases with the mean crack size c̄.
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