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a b s t r a c t

In this paper we show that mapping tensors may be constructed to transform any arbitrary

strain measure in any other strain measure. We present the mapping tensors for many usual

strain measures in the Seth–Hill family and also for general, user-defined ones. These mapping

tensors may also be used to transform their work-conjugate stress measures. These transfor-

mations are merely geometric transformations obtained from the deformation gradient and,

hence, are valid regardless of any constitutive equation employed for the solid. Then, advan-

tage of this fact may be taken in order to simplify the form of constitutive equations and their

numerical implementation and thereafter, perform the proper geometric mappings to convert

the results –stresses, strains and constitutive tangents– to usually employed measures and to

user-selectable ones for input and output. We herein provide the necessary transformations.

Examples are the transformation of small strains formulations and algorithms to large defor-

mations using logarithmic strains.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Whereas in small strain continuum mechanics there is no debate about which ones are the stress and strain measures to be

used in constitutive equations, at large strains the options are multiple. Regarding large strains, the Seth–Hill [1,2] family of strain

measures (see also the previous work [3]) are typically used, although some other deformation measures are being proposed [4].

Different authors have different preferences over the strain measures. For example, in large strain hyperelasticity it is typical to

use the Cauchy–Green deformation tensor (see for example [5–7]), or alternatively the Green–Lagrange strain tensor. Deforma-

tion invariants used in anisotropic hyperelasticity are almost always defined from the Cauchy–Green deformation tensor [5]. The

reason for this choice is that the Cauchy–Green deformation tensor and the Green–Lagrange strain tensor are directly obtained

from the deformation gradient and the latter from the gradient of the displacements. Hence, they are naturally included in the

Updated Lagrangian and Total Lagrangian formulations in finite element codes [8,9]. Logarithmic strains are also a good choice

not only for hyperelasticity [10–12] and visco-hyperelasticity [13–15], but specially for plasticity [16–22]. It has been shown that

a linear relation between logarithmic strains and Kirchhoff stresses yield a rather accurate prediction of the behavior of some

metals and polymers [23,24]. Furthermore, the use of a quadratic hyperelastic energy function of the logarithmic strains and an

exponential integration allows for simple, yet accurate stress integration algorithms in large strain elasto-plasticity, where a small
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strain integration is employed teamed with geometric pre- and postprocessors [17,21,22]. Logarithmic strains have arguably also

a more intuitive and meaningful interpretation, not only for uniaxial loading but also for shear terms [25,26].

However, one of the issues usually not well treated in the literature and, hence, which yields some misunderstandings is the

fact that the choice of one strain measure over another is essentially a matter of tradition and can be also a matter of convenience.

Furthermore, stresses and strains for user input and output should be selectable by the user, independently of the material model

being employed. One of the purposes of this paper is to show that any strain measure may be directly related to any other

strain measure and then, the proper work-conjugate stress measure must be employed, which remarkably transforms using

equivalent relations. Furthermore, generalized strain measures, not only the Seth–Hill bundle [1,2], may be used if they are more

convenient for the purpose, for example in order to possibly establish linear constitutive relations between stresses and strains

as, for example in [16–22] and in [4] in a more general context. Then, the transformation from any strain measure (for example

the deformation gradient or the Green–Lagrange strain) to the generalized one is simply performed using the proper mapping

tensor which we also introduce. In a similar way, the transformation of the resulting generalized stress measure to Cauchy or

Piola stresses, or the resulting constitutive tangent, may also be performed using similar mapping tensors. An important point

is that these transformations are valid regardless of the constitutive equations for the material and of the material symmetries.

In fact, we remark that no constitutive equation will be used throughout the paper except in the examples. In essence, they can

be considered as deformation measures in locally transformed bodies. Invariants for constitutive equations may also be defined

using these generalized strain measures.

In the following section of the paper we depart from the stress power to establish power conjugacy from scratch. Then we

introduce the stress and strain mapping tensors for most of the typically used strain and their work-conjugate stress measures.

Finally we introduce generalized strain measures, their work-conjugate stress measures and the mapping between two arbitrary

sets. We further derive the transformations for general constitutive equations from any stress/strain couple to any other one. We

will assume a Cartesian representation to simplify the exposition, but of course the results are valid regardless the system of

representation employed.

2. The stress power and work-conjugacy

Assume we have a body with an original volume 0V and a deformed volume tV, surrounded respectively by 0S and tS. A point

representing an infinitesimal volume is denoted in the reference volume by 0x, and in the current volume by

t x = 0x + t u (1)

where tu are the displacements. The body forces per unit current volume at time t are b and the surface ones (per unit current

surface) are t. Then by equilibrium of forces∫
tV

b d tV +
∫

t S

td t S = 0 (2)

By definition of the Cauchy stress tensor σ—Cauchy’s tetrahedron

t(t x, n) = σ(t x) · n = n · σ(t x) (3)

where n is the unit vector normal to the plane related to the stress vector t and where the dot implies an index contraction, i.e. a

scalar product in the case of vectors. The second identity holds because of equilibrium of angular moments. Then∫
tV

b d tV +
∫

t S

n · σ d t S = 0 (4)

and by the generalized Gauss theorem —see Eq. (5.1.5) of Ref. [27]∫
tV

(b + ∇ · σ)d tV = 0 (5)

where ∇ · σ is the divergence of the Cauchy stress tensor respect to the current coordinates. By the localization theorem the well

known local equilibrium equation is obtained —c.f. Eq. (5.3.5) of Ref. [27]

∇ · σ + b = 0 (6)

Aside, if v is the velocity field at time t, such that

v = t ẋ = t u̇ (7)

the mechanical power is

P =
∫

tV

b · v d tV +
∫

t S

t · v d t S (8)

Then using again Eq. (3) and the generalized Gauss theorem

P =
∫

tV

b · v d tV +
∫

t S

n · σ · v d t S (9)



Download English Version:

https://daneshyari.com/en/article/1702919

Download Persian Version:

https://daneshyari.com/article/1702919

Daneshyari.com

https://daneshyari.com/en/article/1702919
https://daneshyari.com/article/1702919
https://daneshyari.com

