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a b s t r a c t

We study a robotic three-machine flow-shop scheduling problem, in which n identical jobs

are to be processed and the objective is to minimize the makespan. After the job’s completion

on either the first or the second machine it is transferred by a robot to the next (consecutive)

machine in the shop. A single robot is available for transferring the jobs. We show that the

problem can be solved by decomposing it into a set of sub-problems, and by providing a robot

schedule to each sub-problem that yields a makespan value which matches the lower bound

value.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study a flow-shop scheduling problem in which jobs are identical and a single robot is responsible for

the transportation of jobs between consecutive machines. Our objective is to provide a robot schedule so as to minimize the

makespan. Robotic flow-shop systems are widely prevalent in automatic manufacturing systems (see, e.g., Crama and Van de

Klundert [7], Zhou et al. [49] and Yan et al. [47]), and therefore providing an efficient robot and machine schedule for such

systems is an important challenge. Several different sets of robotic flow-shop scheduling problems have been considered in the

literature; those most frequently studied are listed below.

• Set 1: a set consisting of a single robot, where the objective is to minimize the makespan. There may be two types of capacity

constraints. The first relates to the capacity of the input and output buffers of each machine, and the second relates to the

robot capacity, i.e., a constraint on the number of jobs that the robot can transfer in a single move. Different problems belong

to this set have been analyzed, among others, by Stern and Vinter [44], Panwalkar [39], Kise [26], Kise et al. [27], Levner et al.

[33], Hurink and Knust [20], Lee and Chen [29], Lee and Strusevich [31], Tang and Liu [45] and Ling and Guang [35].
• Set 2: a set of problems consisting of a sufficient number of robots with no technological constraints such that any job that

is completed on any one of the machines is immediately transferred to the input buffer of the next (consecutive) machine in

the shop with no delays (see, e.g., Maggu and Das [36], Yu [48], Dell’Amico [15] and Karuno and Nagamochi [24]).
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• Set 3: a set in which the production is cyclic and thus the objective is to minimize the cycle time, i.e., to maximize the

production rate (see, e.g., Sethi et al. [41], Batur et al. [4], Crama and Van de Klundert [6] and [7], Karaznov and Livshits [25],

Gultekin et al. [19], Agnetis [1], Kats and Levner [21], Levner et al. [34], Che et al. [8–10], Chu [13], Kats et al. [22], Zhou et al.

[49] and Lei et al.[32]).

Our problem belongs to the first set of problems, so we begin by first defining this set of problems and then provide a brief

literature review. A general definition of the first set of problems can be stated as follows: A set of n jobs, J = {J1, . . . , Jn}, is

available for processing at time zero, and is to be scheduled on a set of m machines, M = {M1, . . . , Mm}, in a flow-shop scheduling

system. In such a system, each job Jj consists of m operations O j = {O1 j, . . . , Om j}, which must be processed in the order O1 j →
. . . → Om j . Operation Oij must be processed on machine Mi without preemption for pij ≥ 0 time units. Each machine Mi (i =
1, . . . , m) has both an input buffer and an output buffer, Ii and Oi, with a capacity of cIi

and cOi
, respectively, meaning that the

inventory of jobs in these buffers is limited to cIi
and cOi

units, respectively. It is assumed that there is an automatic mechanism

beside each machine Mi which allows each robot to perform both download and upload operations from the buffers in negligible

time. A single robot is responsible for the transportation of any job Jj ( j = 1, . . . , n) from each machine Mi to its consecutive

machine Mi+1 (i = 1, . . . , m − 1 ). Let tij be the transportation time required for the robot to transfer job Jj from machine Mi to

machine Mi+1, and let tei (i = 1, . . . , m − 1) be the time required for the robot to return empty (without carrying a job) from

machine Mi+1 to machine Mi. The number of jobs that can be transferred in a single move is limited to be not greater than cR,

which is the robot capacity limitation. Moreover, the empty return times are assumed to be additive, i.e., the time for the robot to

travel between two distinct machines is the sum of the empty traveling times between all intermediate machines. For simplicity,

we omit the machine index when m = 2, such that, t1 j = t j is the transfer time of job Jj from machine M1 to machine M2, and

the empty return time from M2 to M1 is simply te. For a given robot and machine schedule, let Cj be the completion time of job

Jj for j = 1, . . . , n on Mm. Our objective is to find an optimal robot and machine schedule that minimizes the makespan, which is

defined by Cmax = max j=1,...,n{Cj}.

Throughout this paper we will use the standard three-field notation, α|β|γ , introduced by Graham et al. [18] for scheduling

problems. The α field presents the machine environment and contains a single entry. We include an Fm, R1 entry in the α field to

denote a flow-shop scheduling system with m machines and a single robot. The β field describes the processing characteristics

and constraints. For example, if pi j = pi (ti j = ti) is specified in this field, it implies that the job processing times (transportation

times) are job-independent, and if cIi
= cI is specified, it implies that the size of the input buffer is machine-independent. The

γ field contains the optimization criteria, which is the makespan (Cmax ). Unless explicitly stated elsewhere in the β field, we

assume an unlimited capacity of input and output buffers (i.e., that cIi
≥ n and cOi

≥ n for i = 1, . . . , m), and that the robot can

only move a single job at a time (i.e., cR = 1). For example, Fm, R1|ti j = ti|Cmax refers to a makespan minimization flow-shop

scheduling problem with m machines and a single robot that is responsible to transfer jobs between machines. The non-empty

transportation times are machine-dependent and job-independent. There is no capacity limitation on the buffers between the

machines, and the number of jobs to be transferred in a single robot move is restricted to one.

1.1. Literature review

Kise [26] proves that the F2, R1|t j = t|Cmax problem is ordinary NP-hard. Hurink and Knust [20] study various variants of

the Fm, R1||Cmax problem with zero empty return times (tei = 0 for i = 1, . . . , m − 1). They prove that the F2, R1|tei = 0|Cmax

problem is equivalent to the well-known F3||Cmax problem, and is thus strongly NP-hard. They also prove that the less general

problems F2, R1|t j = t, tei = 0|Cmax and F2, R1|pi j = p, tei = 0|Cmax are strongly NP-hard, and that other special cases of the

F2, R1|tei = 0|Cmax problem can be solved in polynomial time. These include the special case where either all processing times

are restricted to unity, and the case of equal processing times with only two possible transportation times. Hurink and Knust

further show that if all processing times are equal and the transportation times are job-independent (but machine-dependent)

then the resulting Fm, R1|pi j = p, ti j = ti, tei = 0|Cmax problem can be solved in polynomial time for any arbitrary number of

machines. Ling and Guang [35] show that the F2, R1|pi j = p j, t j ∈ {t1, t2}, tei = 0|Cmax problem is strongly NP-hard, where

tj ∈ {t1, t2} implies that there are only two possible transportation times. In all the above-mentioned papers it is assumed that

the robot has the capacity to transfer a single job at a time (that is, cR = 1). Lee and Chen [29] study the case where the robot has

the capacity to transfer more than a single job in a single move. They show that the F2, R1|t j = t, cR ≥ 3|Cmax problem is strongly

NP-hard, and that problems F2, R1|p1 j = p j, t j = t, cR = cR|Cmax and F2, R1|p2 j = p j, t j = t, cR = cR|Cmax are solvable in polyno-

mial time for any fixed capacity of the robot, cR. Lee and Strusevich [31] study the F2, R1|cR ≥ n|Cmax problem, where cR ≥ n

indicates that the capacity of the robot is unlimited. They consider a family of schedules F(2) that includes only two non-empty

robot moves from M1 to M2, which further implies that there is only a single empty move from M2 to M1. They prove that the

problem of finding the best schedule in F(2) is NP-hard, and that for any ε > 0 there is an instance of the problem for which

the makespan of the best schedule from class F(2) is strictly greater than 3/2 − ε times the optimal value. Then, they construct

a heuristic algorithm that finds a schedule from class F(2) which is not more than 3/2 times the value of the optimal solution.

Stern and Vinter [44] study the F2, R1|cIi
= cOi

= 0|Cmax problem, reformulate it as a asymmetric traveling salesman problem,

and provide a heuristic procedure for its solution. Later, Ganesharajah et al. [16] prove that this problem is strongly NP-hard by

a reduction from the well-known strongly NP-hard F3|no-wait|Cmax problem. Other variants of the problem on two machines

have been studied by Panwalkar [39], Kise et al. [27], Levner et al. [33] and Tang and Liu [45].
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