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a b s t r a c t

Present paper deals with the problem of thermo-viscoelastic interactions in a homoge-
neous, isotropic three-dimensional medium whose surface suffers a time dependent ther-
mal shock. The problem is treated on the basis of three-phase-lag model with two
temperatures. Medium is assumed to be unstrained and unstressed initially and has uni-
form temperature. Normal mode analysis technique is employed onto the non-dimensional
field equations to derive the exact expressions for displacement component, temperature
fields, stress and strain. The problem is illustrated by computing the numerical values of
the field variables for a copper material. Finally, all the physical fields are represented
graphically to estimate and highlight the effects of the different parameters considered
in this problem.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The conventional dynamic theory of thermoelasticity rests upon the hypothesis of the Fourier’s law of heat conduction in
which the temperature distribution is governed by a parabolic-type partial differential equation. As a consequence, the the-
ory predicts that a thermal signal is felt instantaneously everywhere in a body. This implies an infinite speed of propagation
of the thermal signals and is unrealistic from the physical point of view, especially for short-time responses. Also, it is now
well known that heat transmission at low temperature propagates by means of waves. These aspects have aroused much
interest and activity in the field of heat propagation and gave rise to the subject ‘‘generalized thermoelasticity.’’ The general-
ized thermoelasticity theories involve hyperbolic-type governing equations and admit finite speed of thermal signals. Among
generalized models, the extended thermoelasticity theory involving one thermal relaxation time proposed by Lord and
Shulman [1] and the temperature-rate-dependent theory of thermoelasticity including two relaxation times proposed by
Green and Lindsay [2] are familiar to many researchers and many works have been done under these theories.

Providing sufficient basic modifications in the constitutive equations that permit treatment of a much wider class of heat
flow problems, Green and Naghdi [3–5] introduced three models, which are subsequently referred to as models I, II and III. GN
models include a term called ‘thermal displacement gradient’ among the independent constitutive variables. When the three
theories are linearized, the heat transport equation of GN-I is the same as the classical heat equation, whereas both GN-II and
GN-III models admit propagation of thermal signals at finite speed. In model II, the internal rate of production of entropy is
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taken to be identically zero, implying no dissipation of thermal energy. This model admits undamped thermoelastic waves in
an elastic material and is known as the theory of thermoelasticity without energy dissipation. Model III includes the previous
two models as special cases. In this model introducing the temperature gradient and thermal displacement gradient as the

constitutive variables, the proposed heat conduction law is of the form ~qðP; tÞ ¼ �½k~rTðP; tÞ þ K�~rvðP; tÞ� where _v ¼ T and
~rv is the thermal displacement gradient. The two positive constants k and K� are the thermal conductivity and the conduc-
tivity rate respectively. K� (of physical dimension conductivity/time) is a material constant characteristic of the theory.

The next generalization to thermoelasticity is reported by Chandrasekharaiah [6]. This model is specially based on the
dual-phase-lag heat conduction law proposed by Tzou [7]. Tzou [7] considered microstructural effects into the delayed
response in time in the macroscopic formulation by taking into account that the increase of the lattice temperature is
delayed due to phonon-electron interactions on the macroscopic level. A macroscopic lagging (or delayed) response between
the temperature gradient and the heat flux vector seems to be a possible outcome due to such progressive interactions. Tzou
[7] introduced two-phase lags to both the heat flux vector and the temperature gradient and considered a constitutive equa-
tion to describe the lagging behavior in the heat conduction in solids. Here the classical Fourier’s law is replaced by an
approximation to a modification of the law with two different translations for the heat flux vector and the temperature
gradient.

Roychoudhuri [8] has recently established a generalized mathematical model of a coupled thermoelasticity theory that
includes three-phase lags for the heat flux vector, the temperature gradient and the thermal displacement gradient. The
more general model established reduces to the previous models as special cases. The generalized constitutive equation

for heat conduction describing the lagging behavior in this model is ~qðP; t þ sqÞ ¼ �½k~rTðP; t þ sTÞ þ K�~rvðP; t þ svÞ�. Here
sv , the delay time in the thermal displacement gradient is also introduced in addition to sq andsT . Three-phase-lag model
is very useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon-electron interactions, phonon-scat-
tering etc., where the delay time sq captures the thermal wave behavior (a small scale response in time), the phase-lag sT

captures the effect of phonon-electron interactions (a microscopic response in space), the other delay time sv is effective
since in the three-phase-lag model, the thermal displacement gradient is considered as a constitutive variable. The stability
of the three-phase heat conduction equation and the relations among the three material parameters are discussed by
Quintanilla and Racke [9].

Effect of internal friction on the propagation of plane waves in an elastic medium may be attributed to the fact that
dissipation accompanies vibrations in solid media due to the conversion of elastic energy to heat energy. Several mathemati-
cal models have been used by authors to accommodate the energy dissipation in vibrating solids where it is observed that
internal friction produces attenuation and dispersion; hence, the effect of the viscoelastic nature of material medium in the

Symbols
rij components of the stress tensor,
ui components of the displacement vector,
q density of the medium,
k� ¼ ke 1þ a0
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b�1 ¼ b1e 1þ b1
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,

b1e ¼ ð3ke þ 2leÞat ,

b1 ¼ ð3kea0 þ 2lea1Þ at
b1e

,

h ¼ T � T0 thermodynamic temperature,
/ ¼ /� T0 conductive temperature,
K� ¼ cEðkeþ2leÞ

4 material constant characteristic of the theory,
ke;le Lame’s constants,
a0; a1 viscoelastic relaxation times,
at coefficient of linear thermal expansion,
a two-temperature parameter,
T absolute temperature,
T0 temperature of the medium in its natural state assumed to be jh=T0j << 1,
eij components of the strain tensor,
e cubical dilatation,
cE specific heat at constant strain,
k thermal conductivity,
sT phase lag for the temperature gradient,
sq phase lag for the heat flux,
sv phase lag for the thermal displacement gradient,
dij Kronecker delta function.
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