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a b s t r a c t

In this paper, we continue the development of the Direct Meshless Local Petrov–Galerkin
(DMLPG) method for elasto-static problems. This method is based on the generalized mov-
ing least squares approximation. The computational efficiency is the most significant
advantage of the new method in comparison with the original MLPG. Although, the
‘‘Petrov–Galerkin’’ strategy is used to build the primary local weak forms, the role of trial
space is ignored and direct approximations for local weak forms and boundary conditions
are performed to construct the final stiffness matrix. In this modification the numerical
integrations are performed over polynomials instead of complicated MLS shape functions.
In this paper, DMLPG is applied for two and three dimensional problems in elasticity. Some
variations of the new method are developed and their efficiencies are reported. Finally, we
will conclude that DMLPG can replace the original MLPG in many situations.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Meshless Local Petrov–Galerkin (MLPG) method has been widely employed to find the numerical solutions of elasto-
static and elasto-dynamic problems. MLPG was first introduced in [1], and was first applied to elasticity in [2]. Afterward,
many papers were appeared for different types of mechanical problems. For example see [3,4] and the recent review paper
[5]. MLPG is based on local weak forms and it is known as a truly meshless method, because it uses no global background
mesh to evaluate integrals, and everything breaks down to some regular, well-shaped and independent sub-domains.
This is in contrast with methods which are based on global weak forms, such as the Element-free Galerkin (EFG) method
[6], where triangulation is again required for numerical integration. But MLPG still suffers from the cost of numerical integra-
tion. This is due to the complexity of the integrands. In MLPG and all MLS based methods, integrations are done over com-
plicated MLS shape functions, and this leads to high computational costs in comparison with the finite elements method
(FEM), where integrands are simple and close form polynomials. Thus, special cares should be taken in performing numerical
quadratures for meshfree methods. These challenges have been addressed in various engineering papers [7–12] and several
approaches to implement numerical integration have been proposed in the literature. A brief review of these approaches is
presented in Section 3 of [13].

This is the reason why this method, and of course the other meshfree methods, have found very limited application to
three-dimensional problems, which are routine applications of FEM.

A tricky modification has been applied to MLPG in [14], in which the numerical integrations are done over low-degree
polynomial basis functions rather than complicated MLS shape functions. In addition, as the shapes of the local sub-domains
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remain unchanged, the values of integrals remain the same. This reduces the computational costs of MLPG, significantly. In
the new method, local weak forms are considered as functionals and they are directly approximated from nodal data using a
generalized moving least squares (GMLS) approximation. Thus this method is called Direct MLPG (DMLPG). Although DMLPG
uses the same local forms, it is theoretically different from MLPG, because it eliminates the role of trial space. DMLPG can be
considered as a generalized finite difference method (GFDM), not only in its usual strong form, but also in a weak for-
mulation. It is worthy to note that, by this modification we do not lose the order of convergence. This has been analytically
proven in [15,16] for different definitions of functionals, specially for the local weak forms of DMLPG.

DMLPG has been applied to the heat conduction problem in [17] and has been numerically investigated for 2D and 3D
potential problems in [18].

In this paper, the application of DMLPG is provided for elasto-static problems for the first time. We consider both two and
three dimensional problems to show the efficiency of the new method. The method can be easily extended to the other prob-
lems in elasticity.

2. Generalized moving least squares

Generalized moving least squares (GMLS) approximation was presented in [15] in details. Here we briefly discuss this
concept. Let X be a bounded subset in Rd; d 2 Zþ, and X ¼ fx1; x2; . . . ; xNg � X be a set of meshless points scattered (with
certain quality) over X. The MLS method approximates the function u 2 U (with certain smoothness) by its values at points
xj; j ¼ 1; . . . ;N, by

uðxÞ � buðxÞ ¼XN

j¼1

ajðxÞuðxjÞ; x 2 X; ð2:1Þ

where ajðxÞ are MLS shape functions obtained in such way that buðxÞ be the best approximation of uðxÞ in polynomial sub-

space PmðRdÞ ¼ spanfp1; . . . ; pQg;Q ¼
mþ d

d

� �
, with respect to a weighted, discrete and moving ‘2 norm. The weight func-

tion governs the influence of the data points and assumed to be a function w : X�X! R which becomes smaller the further
away its arguments are from each other. Ideally, w vanishes for arguments x; y 2 X with kx� yk2 greater than a certain
threshold, say d. Such a behavior can be modeled by using a translation-invariant weight function. This means that w is
of the form wðx; yÞ ¼ uðkx� yk2=dÞ where u is a compactly supported function supported in ½0;1�. If we define

P ¼ PðxÞ ¼ pkðxjÞ
� �

2 RN�Q ;

W ¼WðxÞ ¼ diagfwðxj; xÞg 2 RN�N;
ð2:2Þ

then a simple calculation gives the shape functions

aðxÞ :¼ ½a1ðxÞ; . . . ; aNðxÞ� ¼ pðxÞðPT WPÞ�1
PT W; ð2:3Þ

where p ¼ ½p1; . . . ; pQ �. If Xx ¼ fxj : kx� xjk 6 dg is PmðRdÞ-unisolvent then AðxÞ ¼ PT WP is positive definite [19] and the MLS
approximation is well-defined at sample point x. Of course if kx� xjkP d then ajðxÞ ¼ 0. Thus, in programming we can only
form P and W for active points Xx instead of X. Derivatives of u are usually approximated by derivatives of bu,

DauðxÞ � DabuðxÞ ¼XN

j¼1

DaajðxÞuðxjÞ; x 2 X; a ¼ ða1; . . . ;adÞ 2 Nd
0: ð2:4Þ

These derivatives are sometimes called standard or full derivatives. Details are in [20–22] and any other text containing the
application of MLS approximation.

The GMLS approximation can be introduced as below. Suppose that k is a linear functional from the dual space U�. The
problem is the recovery of kðuÞ from nodal values uðx1Þ; . . . ;uðxNÞ. The functional k can, for instance, describe point evalua-
tions of u, its derivatives up to order m, and the weak formulations which involve u or a derivative against some test function.

The approximation bkðuÞ of kðuÞ should be a linear function of the data uðxjÞ, i.e., it should have the form

kðuÞ � bkðuÞ ¼XN

j¼1

ajðkÞuðxjÞ; ð2:5Þ

where ajðkÞ are shape functions associated to the functional k. If k is chosen to be the point evaluation functional dx, where
dxðuÞ :¼ uðxÞ, then the classical MLS approximation (2.1) is obtained. If we assume k is finally evaluated at sample point x,
then the same weight function wðx; yÞ as in the classical MLS can be used which is independent of the choice of k. Using this
assumption, analogous to (2.3), [15] proves,

aðkÞ :¼ ½a1ðkÞ; . . . ; aNðkÞ� ¼ kðpÞðPT WPÞ�1
PT W; ð2:6Þ
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