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a b s t r a c t

One of the most important issues in multi-objective optimization problems (MOPs) is find-
ing Pareto optimal points on the Pareto frontier. This topic is one of the oldest challenges in
science and engineering. Many important problems in engineering need to solve a
non-convex multi-objective optimization problem (NMOP) in order to achieve the proper
results. Gradient based methods, such as Normal Boundary Intersection (NBI), for solving a
MOP require solving at least one optimization problem for each solution point. This
method can be computationally expensive with an increase in the number of variables
and/or constraints of the optimization problem. Nevertheless, the NBI method is a tech-
nique motivated by geometrical intuition to provide a better parameterization of the
Pareto set than that provided by other techniques. This parameterization is better in the
sense that the points obtained by using the NBI method produce a more even coverage
of the Pareto curve and this coverage does not miss the interesting middle part of the
Pareto curve.This useful property, provides an incentive to create a new method. The first
step in this study is using a modified convex hull of individual minimum (mCHIM) in each
iteration. The second step is introducing an efficient scalarization problem in order to find
the Pareto points on the Pareto front. It can be shown that the corresponding solutions of
the MOP have uniform spread and also weak Pareto optimal points. It is notable that the
NBI and proposed methods are independent of the relative scale of different objective func-
tions. However, it is quite possible that obtaining a solution of the NBI method not be
Pareto optimal (not even locally). Actually, this method aims at getting boundary points
rather than Pareto optimal points that will lead to these points which may or may not
be a Pareto optimal point. The effectiveness of this method is demonstrated with various
test problems in convex and non-convex MOP cases. After that, a few test instances of
the CEC 2009 (Zhang et al. 2008) using the proposed method are studied. Also, the relation-
ship between the optimal solutions of the scalarized problem and the Pareto solutions of
the multi-objective optimization problem is presented by several theorems.
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1. Introduction

In the present world, people have to deal with urbanization and industrialization, increase of water and energy demands,
environmental pollution, shortage of natural resources and food, and many other challenges that necessitate the
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development of a multidisciplinary approach for analyzing divers mechanisms and consequences of modern civilization.
Multi-criteria decision making (MCDM) is concerned with theory and methodology that can treat complex problems
encountered in business, engineering and other areas of human activities (see e.g., [1–4]). There are usually multiple conflict-
ing objectives in scientific problems (see e.g., [4–8]). Since the objectives are in conflict with each other, there is a set of
Pareto optimal solutions. In other words, the optimal decision needs to be made by identifying the best trade-offs among
these criteria, which is the goal of multi-objective optimization. The area of MCDM has developed rapidly, as demonstrated
by Steuer et al., [9]. Researchers have studied multi-objective optimization problems from different perspectives, and thus
there exist different solution philosophies and goals to solve them. One might be to find a set of Pareto optimal solutions,
and/or quantifying the trade-offs which can be satisfied in objectives and/or finding a solution that satisfies the necessities
of a human decision maker (DM). Usually it is not economical to generate the entire Pareto surface, due to the high compu-
tational cost for function evaluations. In engineering problems, one of the aims is to find a representative sample of Pareto
optimal points. There are usually multiple Pareto optimal solutions for multi-objective optimization problems. This means
that solving such a problem is not as straightforward as it is for a conventional single-objective optimization problem.
Therefore, different researchers have defined the term solving a multi-objective optimization problem in various ways.
Some methods convert the original problem with multiple objectives into a single-objective optimization problem. This is
called a scalarized problem, although many methods act in other ways. If scalarization is done carefully, Pareto optimality
of the solutions obtained can be guaranteed. There has been a great deal of effort by the researchers in the area (especially in
recent years) for developing methods to generate an approximation of the Pareto front (see e.g., [10–26]).

Multi-objective optimization methods can be divided into four classes[27]. In so-called no preference methods, no DM is
expected to be available, but neutral compromise solutions are identified without preference information. The other classes
are so-called a priori, a posteriori and interactive methods that all involve preference information from the DM in different
ways. In a priori methods, preference information is first asked from the DM and then a solution best satisfying these pref-
erences is found. In a posteriori methods, a representative set of Pareto optimal solutions are first found and then DM must
choose one of them. In interactive methods, the decision maker is allowed to iteratively search for the most preferred solu-
tion. In each iteration of the interactive method, the DM is shown Pareto optimal solution(s) and describes how the solu-
tion(s) can be improved. Scalarizing a multi-objective optimization problem means formulating a single-objective
optimization problem such that optimal solutions to the single-objective optimization problem are Pareto optimal solutions
to the multi-objective optimization problems [27]. In addition, it is often required that every Pareto optimal solution can be
reached with some parameters of the scalarization [27]. With different parameters for the scalarization, different Pareto
optimal solutions are produced. A general formulation for a scalarization of a multi-objective optimization is:

minimize gðf 1ðxÞ; . . . ; f pðxÞ; hÞ
subject to x 2 Xh;

ð1Þ

where h is vector parameter, the set Xh # X is a set depending on the parameter h and g : Rpþ1 ! R is a function.
One of these methods is the weighted sum method (WSM) [1,28] which is also called linear scalarization. The idea of the

WSM is the conversion of the MOP into a single objective optimization problem using a convex combination of objectives.
Even though under some conditions, the solution obtained by the WSM method is a Pareto optimal point, the WSM method
cannot generate any points in the non-convex part of the Pareto front and also, the WSM may duplicate solutions with dif-
ferent weight combinations. However, this method does not often produce an even distribution of Pareto points [29]. On the
other hand, a posteriori method aims at producing all the Pareto solutions or a representative subset of the Pareto optimal
solutions. Most a posteriori methods fall into either one of the following two classes: mathematical programming based a
posteriori methods, where an algorithm is repeated and each run of the algorithm produces one Pareto optimal solution,
and evolutionary algorithms where one run of the algorithm produces a set of Pareto optimal solutions.

Well-known examples of mathematical programming based a posteriori methods are the Normal Boundary Intersection
(NBI) [11], Modified Normal Boundary Intersection (NBIm) [30], Normal Constraint (NC) [31,32], Successive Pareto
Optimization (SPO) [33] and Directed Search Domain (DSD) [34] methods that solve the multi-objective optimization prob-
lem by constructing several scalarizations. The solution to each scalarization yields a Pareto optimal solution, whether
locally or globally. Cohon [35] developed a constraint method (CM) and Weck [36] developed an adaptive weighted sum
method (AWS) for multi-objective optimization. The scalarizations of the NBI, NBIm, NC, DSD, CM and AWS methods are con-
structed with the target of obtaining evenly distributed Pareto points that give a good evenly distributed approximation of
the real set of Pareto points.

The NBI method [11] uses a series of tractile single objective problems to approximate the Pareto front. Starting from a
point on the Utopia plane which passes through individual function minimizers, a single objective optimization problem in
NBI is to maximize the distance from the starting point to a point located on the normal line of the Utopia plane. With dif-
ferent starting points on the Utopia plane, NBI produces well distributed solutions. However, the NBI and its improvements
such as the Normal Constraint (NC) and modified normal boundary intersection methods (mNBI) are alternatives not
affected by these problems and do not sacrifice computational time to better obtain the Pareto frontier. The proposed mod-
ification which will be based on the NBI method with some fundamental changes is more suitable for engineering design and
the other nonlinear multi-objective optimization problems. For example, the proposed method provides a gradient based
algorithm which, in the case of continuous Pareto frontier for bi-objective optimization problems, obtains the Pareto frontier
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