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a b s t r a c t

In this study, we consider the inverse problem of determining a source term in an elliptic
problem based on boundary measurements. The boundary measurements allow the unique
determination of the harmonic component of the source, and thus a priori information is
required for its complete identification. Using this a priori information, we determine
the compactness of the class of sources and a uniqueness theorem for its identification
from Cauchy data, thereby allowing us to propose a stable algorithm for finding
‘‘approximate solutions’’ of the inverse problem. The proposed procedure is demonstrated
by individual cases, where we know the ‘‘geometry’’ of the inner region and the source
takes a constant value.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this study, we consider a problem that corresponds to the physical situation of a non-homogeneous conductive med-
ium X immersed in a perfect insulator. For simplicity, but without loss of generality in the field of applications, we assume
that X is a simply connected open set in RN;X1 is another open simply connected set compactly contained in X, and
X2 ¼ X nX1. We denote S1 and S2 as the boundary of X1 and the exterior boundary of X2, respectively. We assume that
X1 and X2 have different conductivities of r1 and r2, respectively. We denote u1 and u2 as the electric potentials generated
in X1 and X2, respectively. Thus, the simplest stationary model that describes the behavior of u1 and u2 is given by:

� r1Du1 ¼ f ; in X1; ð1Þ
Du2 ¼ 0; in X2; ð2Þ
u1 ¼ u2; on S1; ð3Þ

r1
@u1

@n1
¼ r2

@u2

@n1
; on S1; ð4Þ

r2
@u2

@n2
¼ 0; on S2; ð5Þ
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where @ui
@nj

denotes the normal derivative of ui in Sj with respect to the normal unitary vector nj, which is exterior to

Xj; i; j ¼ 1;2.
In Section 2, we present a summary of the solubility of the problem (1)–(5). Further details can be found in [1,2].
The problem addressed in the current study corresponds to the inverse problem of source identification in the problem

(1)–(5) using additional data, u2jS2
¼ /. Using a similar approach in specific situations with relevant a priori information on f

and other additional data associated with u, problems of this type have been studied in [3–5,1,6–14]. In the following, we
refer to the boundary value problem (1)–(5) as EBP.

In this study, we assume that there is only one harmonic source h 2 L2ðX1Þ and it is orthogonal to the constants in the
usual scalar product of L2ðX1Þ, i.e., hh;1iL2ðX1Þ ¼

R
X1

h ¼ 0, which reproduces the measurement / on S2. In the general case

where a priori information is used, it is assumed that f 2 F , where F is a class of functions in L2ðX1Þ with certain special
properties, and thus a good criteria for choosing a ‘‘first approximation’’ of the source in F that ‘‘better recovers’’ the mea-
surement / is obtained by solving the optimization problem:

min
f2F
kf � hk2

L2ðX1Þ , f �: ð6Þ

In Section 3, we demonstrate the important role played by f � in solving the identification problem by minimizing the fit-
ting functional

min
f2F
ku2;f jS2

� /k2
L2ðS2Þ; ð7Þ

where u2;f represents the solution in X2 of the EBP for f and u2;f jS2
denotes the trace of u2;f on S2.

Unlike (6), we note that the minimization of the functional (7) requires the solution of the forward problem associated
with EBP in each iteration step, which can be computationally expensive.

2. Weak solution of EBP and the associated inverse problem

Let L2ðXiÞ; L2ðSiÞ; i ¼ 1;2 and L2ðXÞ be the spaces of square integrable functions defined on Xi; Si and X, respectively. We
denote H1ðXiÞ; i ¼ 1;2 and H1ðXÞ as the corresponding Sobolev spaces of the functions in L2ðXiÞ and L2ðXÞ, respectively, the
generalized first derivatives of which are also square integrable functions. We denote H1

2
ðSiÞ; i ¼ 1;2 as the subspaces of

L2ðSiÞ, which comprise the traces to Si of the functions in H1ðXiÞ. Finally, HðXiÞ; i ¼ 1;2 denote the subspaces (closed) of har-
monic functions in L2ðXiÞ. We use the superscript (1) in these spaces to denote the spaces of functions that are orthogonal to
the constants with respect to the corresponding scalar product, i.e., if W is any previous space then,
W ð1Þ ¼ w 2W : hw;1iW ¼ 0

� �
, where h; iW is the scalar product of W. We also use the superscript ? to denote the orthogonal

subspace to a subset of square integrable functions.

Definition 2.1. Given f 2 L2ðX1Þ, a function u 2 H1ðXÞ is a weak solution of EBP if it satisfies the following relationshipZ
X1

f v1dX1 ¼
Z

X1

r1ru1 � rv1dX1 þ
Z

X2

r2ru2 � rv2dX2; ð8Þ

8v 2 H1ðXÞ, where v i ¼ v jXi
; i ¼ 1;2 (see [1,2]).

It is easy to see that the relation (8) holds for any classical solution of the problem (1)–(5). Indeed, it is sufficient to trans-
form the expressionZ

X1

r1ru1 � rv1dX1 þ
Z

X2

r2ru2 � rv2dX2 with v 2 H1ðXÞ;

using the Green formula to obtain (8).
The following result is known.

Theorem 2.2. The weak solution of the EBP exists if and only if f 2 Lð1Þ2 ðX1Þ. In this case, the weak solution is unique in Hð1Þ1 ðX1Þ
and the following estimate holds

kukH1ðXÞ 6 CkfkL2ðX1Þ; ð9Þ

where C is a constant that does not depend on f (see Section 1.2 of Chapter IV [2]).

From inequality (9), it follows that the operator T, which for each f 2 Lð1Þ2 ðX1Þ is associated with the weak solution

u 2 Hð1ÞðX1Þ of the problem (1)–(5), is continuous from Lð1Þ2 ðX1Þ to H1ðXÞ. Since the trace operator is compact from H1ðXÞ
to L2ðS2Þ, then it is concluded that the composed operator Ao : Lð1Þ2 ðX1Þ ! L2ðS2Þ, defined by Aoðf Þ ¼ u2jS2

, is compact.
The following result can be found in [1].
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