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a b s t r a c t

The differential transform method is extended to solve the Cauchy type singular integral
equations (CSIEs) over a finite interval. New theorems for transformation of Cauchy singu-
lar integrals are given with proofs. Approximate solutions of CSIEs with two types of
kernels, Degenerate and convolution, are obtained. The system of linear equations for
characteristic equation is solved analytically. Numerical results are shown to illustrate
the efficiency and accuracy of the present method.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Consider the Cauchy type singular integral equations (CSIEs) of the formZ 1

�1

wðtÞ
t � x

dt þ
Z 1

�1
Kðx; tÞwðtÞdt ¼ f ðxÞ; �1 < x < 1; ð1Þ

where Kðx; tÞ and f ðxÞ are given real valued functions belonging to the Hölder class and uðtÞ is to be determined. Eq. (1) arises
in many diverse areas of physical sciences like neutron transport, contact problems in elasticity and wave guide theory [1–3].
The integral in Eq. (1) is considered as Cauchy principal value integral. If Kðx; tÞ ¼ 0 in Eq. (1) then we obtain the character-
istic singular integral equationZ 1

�1

wðtÞ
t � x

dt ¼ f ðxÞ; �1 < x < 1: ð2Þ

It is known that the analytical solution of Eq. (2) is given by the following expression [4]
Case (I): The solution is bounded at the end x ¼ �1, but unbounded at the end x ¼ 1,

wðxÞ ¼ � 1
p2

ffiffiffiffiffiffiffiffiffiffiffi
1þ x
1� x

r Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffi
1� t
1þ t

r
f ðtÞ
t � x

dt: ð3Þ

Case (II): The solution is bounded at the end x ¼ 1, but unbounded at the end x ¼ �1,

wðxÞ ¼ � 1
p2

ffiffiffiffiffiffiffiffiffiffiffi
1� x
1þ x

r Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ t
1� t

r
f ðtÞ
t � x

dt: ð4Þ
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By solving Eq. (1) with respect to its characteristic part, we find that it is equivalent to the Fredholm equation type of the
second kind [2]

Case (I):

wðtÞ þ
R 1
�1 N1ðt; sÞwðsÞds ¼ F1ðtÞ;

N1ðt; sÞ ¼ 1
p2

ffiffiffiffiffiffi
1þt
1�t

q R 1
�1

ffiffiffiffiffiffi
1�x
1þx

q
Kðx;sÞ

t�x dx;

F1ðtÞ ¼ 1
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>>>>;
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Case (II):

wðtÞ þ
R 1
�1 N2ðt; sÞwðsÞds ¼ F2ðtÞ;

N2ðt; sÞ ¼ 1
p2

ffiffiffiffiffiffi
1�t
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q R 1
�1
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q
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F2ðtÞ ¼ 1
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9>>>>=
>>>>;

ð6Þ

Kim [5] investigated the problem of finding the bounded solution of Eq. (2). He used the method biased on Gaussian
quadrature with choosing the zeros of first and second kind Chebyshev polynomials as the collocation and abscissae points
respectively. Chakrabarti and Berge [4] have proposed an approximate method to solve Eq. (1) using polynomial approxima-
tion of degree n for four cases. Eshkovatov et al. [6] have presented the efficient approximate method for solving Eq. (2) using
Chebyshev polynomials of the first, second, third and fourth kinds with corresponding weight functions for four cases. Nik
Long et al. [7] presented semi-bounded numerical solutions for Eq. (1). They used the truncated Chebyshev series of the third
and fourth kinds with the corresponding weight functions. Mohankumar and Natarajan [8] discussed a numerical solution
for a typical Cauchy singular integral equation. They showed a solution prescription that combines a polynomial expansion
for the unknown, a collocation procedure for fixing the expansion coefficients and a double exponential quadrature for the
Cauchy principal value integral.

In this paper we present approximate solution technique for solving Eqs. (1) and (2) in two cases:
Case (I): The solution is bounded at the end x ¼ �1, but unbounded at the end x ¼ 1.
Case (II): The solution is bounded at the end x ¼ 1, but unbounded at the end x ¼ �1.

2. Differential transform method

The Transformation of the nth derivative of a function f in one variable is as follows [9,10]

FðkÞ ¼ 1
k!

dkf ðxÞ
dxk

" #
x¼x0

ð7Þ

and the inverse transformation is defined as

f ðxÞ ¼
X1
k¼0

FðkÞ ðx� x0Þk: ð8Þ

Theorem 1. If f ðxÞ ¼ xn, then FðkÞ ¼ dðk� nÞ, where

dðk� nÞ ¼
1; k ¼ n;

0; k – n:

�

Theorem 2. If f ðxÞ ¼ agðxÞ, then FðkÞ ¼ aGðkÞ, where a is a constant and GðkÞ is a differential transform of gðxÞ.
Theorems 1 and 2 can be deduced from Eq. (7) with assuming that x0 ¼ 0.

Theorem 3. If gðxÞ ¼
R 1
�1

ffiffiffiffiffiffi
1þt
1�t

q
uðtÞ
t�x dt, then the differential transform of g is

GðkÞ ¼
XN

k¼1

Xk�1

k1¼0

UðkÞ hðk� k1 � 1Þ þ hðk� k1Þ½ �dðk1 � kÞ þ pUðkÞ; N !1:

where UðkÞ is the differential transform of u and the constants hðmÞ are defined as

hðmÞ ¼

p; m ¼ 0;
0; m is odd;
1�3�5...ðm�1Þ

2
m
2 m

2ð Þ!
p; m is even:

8>><
>>: ð9Þ
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