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a b s t r a c t

Second-order cone optimization (denoted by SOCO) is a class of convex optimization prob-
lems and it contains the linear optimization problem, convex quadratic optimization prob-
lem and quadratically constrained convex quadratic optimization problem as special cases.
In this paper, we propose a new smoothing Newton method for solving the SOCO based on
a non-symmetrically perturbed smoothing Fischer–Burmeister function. At each iteration,
a system of linear equations is solved only approximately by using the inexact Newton
method. It is shown that any accumulation point of the iteration sequence generated by
the proposed algorithm is a solution of the SOCO. Furthermore, we prove that the gener-
ated sequence is bounded and hence it has at least one accumulation point. Under the
assumption of nonsingularity, we establish the local quadratic convergence of the
proposed algorithm without strict complementarity condition. Numerical experiments
indicate that our method is effective.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The second-order cone (SOC) in Rn, also called the Lorentz cone or the ice-cream cone, is defined as

Kn :¼ ðx1; x2; . . . ; xnÞT 2 Rn : x2
1 P

Xn

j¼2

x2
j ; x1 P 0

( )
;

where n P 2 is some natural number. Then the interior of Kn can be defined by

intKn :¼ ðx1; x2; . . . ; xnÞT 2 Rn : x2
1 >

Xn

j¼2

x2
j ; x1 > 0

( )
:

Second-order cone optimization (SOCO) problem is a class of convex optimization problems in which a linear function is
minimized over the intersection of an affine linear manifold with the Cartesian product of second-order cones. In this paper
we consider the SOCO in standard format
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ðPÞ min cTx : Ax ¼ b; x 2 K
� �

; ð1:1Þ

and the dual problem of (P) is given by

ðDÞ max bTy : ATyþ s ¼ c; s 2 K
n o

; ð1:2Þ

where A 2 Rm�n; c 2 Rn and b 2 Rm, and K � Rn is the Cartesian product of second-order cones, i.e.,

K ¼ Kn1 �Kn2 � � � � � Knr

with Kni � Rni for each i; i ¼ 1;2; . . . ; r, and n ¼
Pr

i¼1ni. In the subsequent analysis, we focus our analysis on the case K ¼ Kn

for simplicity. Our analysis can be easily extended to general cases.
Define

F :¼ fðx; y; sÞ : Ax ¼ b; ATyþ s ¼ c; x; s 2 Kg;

F 0 :¼ fðx; y; sÞ : Ax ¼ b; ATyþ s ¼ c; x; s 2 intKg;

respectively. Throughout the paper, we make the following assumptions.

Assumption 1.1. Both (P) and (D) are strictly feasible, i.e., F 0 – ;.

Assumption 1.2. A has full row rank.

Under Assumption 1.1, it is well-known that both (P) and (D) have optimal solutions and their optimal values coincide [1],
and the SOCO is equivalent to its optimality conditions:

Ax ¼ b;

ATyþ s ¼ c; ð1:3Þ

x � s ¼ 0; x; s 2 K; y 2 Rm;

where ‘‘�’’ denotes the Jordan product, which will be presented in the next section.
In the last few years, the SOCO has received considerable attention from researchers because of its wide range of appli-

cations. We refer the interested reader to the survey paper by Lobo et al. [2] and the references therein. Many researchers
have studied interior-point methods (IPMs) for solving the SOCO and achieved plentiful and beautiful results (see, e.g., [3,4]
and the references therein).

Recently, smoothing-type methods have attracted a lot of attention partially due to their encouraging convergent prop-
erties and superior numerical performances (e.g., [5–19]). In particular, the smoothing Newton method proposed by Qi et al.
[18] has received considerable attention from researchers for its simplicity and weaker assumptions imposed on smoothing
functions. The Qi–Sun–Zhou method [18] needs to solve only one system of linear equations and to perform only one line
search at each iteration, and it is locally superlinearly/quadratically convergent without strict complementarity. It should
be noted that in order to obtain the local superlinear (quadratic) convergence some algorithms (e.g., [5,20]) depend strongly
on the assumptions of uniform nonsingularity and strict complementarity conditions. By modifying and extending the Qi-
Sun-Zhou method [18], some smoothing Newton methods have been proposed for solving the SOCO (e.g., [6–8,10,19]). These
methods reformulate the system (1.3) as a family of parameterized smooth equations and solve the smooth equations
approximately by using Newton’s method at each iteration. By driving the parameter to converge to zero, one can expect
to find a solution of the SOCO.

Motivated by their work, in this paper we propose a new smoothing Newton method for solving the SOCO. Under mild
assumptions, we prove that the proposed method is globally and locally quadratically convergent. To compare with existing
smoothing methods for the SOCO (e.g., [6–8,10,19]), our method has the following special properties.

(a) It is based on a non-symmetrically perturbed smoothing function, while existing smoothing methods
(e.g., [6–8,10,19]) were all designed by some symmetrically perturbed smoothing functions.

(b) In our method, a system of linear equations is solved only approximately by using the inexact Newton method (see,
Remark 4.1 below and [21]). Notice that in existing smoothing methods (e.g., [6–8,10,19]), the corresponding system is
exactly solved at each iteration.

(c) If Assumptions 1.1 and 1.2 hold, then the iteration sequence generated by our method is bounded and hence it has at
least one accumulation point. This result is stronger than the corresponding results in [6–8,10,19].
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