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a b s t r a c t

In this study, complex dynamics of a classical discrete-time predator–prey system are
investigated. Rigorous results on the existence and stability of fixed points of this system
are derived. It can also be shown that the system undergoes flip bifurcation, Neimark–
Sacker bifurcation and codimension-two bifurcation associated with 1:2 resonance using
the ideas of center manifold theorem, bifurcation theory and the normal form method. Spe-
cially, we give the explicit approximate expression of the invariant curve which is caused
by the Neimark–Sacker bifurcation. At the same time, bifurcation phenomena and chaotic
features are justified numerically via computing Lyapunov exponent spectrum. Results of
numerical simulation verify our theoretical analysis. Finally, we extend the hybrid control
strategy (state feed back and parameter perturbation) to control flip bifurcation and
Neimark–Sacker bifurcation in two-dimensional discrete system.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

The discrete (and continuous) predator–prey system is a model to describe the population dynamics of two interacting
species, a predator and its prey. The complex dynamics of these systems have been hot topics in theoretical and mathemat-
ical biology over the past decade (discrete cases [1–18] and continuous cases [19–24]). As opposed to the continuous case,
the discrete-time predator–prey system may be more appropriate when populations have non-overlapping generations (dif-
ference equations) [4,5]. What’s more, the choice of discrete case is also crucial because it may exhibit more complicated
dynamic behavior (such as bifurcation, chaos, etc.) and can also provide more efficient computational model for numerical
simulations. For example, the famous logistic difference equation pðnþ 1Þ ¼ ð1þ rÞpðnÞ � rp2ðnÞ is more complicated than
the corresponding continuous model dpðtÞ

dt ¼ rpðtÞð1� pðtÞÞ [4]. As early as 1970s, May pointed out that a simple discrete sys-
tem may have complex dynamics [25]. Whether it is from a mathematical point of view or standpoint of ecology, to explore
the complex dynamics of discrete systems is very meaningful. In a variety of discrete ecological systems, discrete predator–
prey systems are the important class of ecological systems, which have been studied extensively from different perspectives.
Discretization of continuous systems is an important way to obtain discrete models. Refs. [3–7,9,12,13,15] discussed some
discrete predator–prey systems which are derived from the corresponding continuous systems by the forward Euler scheme.
These papers demonstrated that the complex dynamics in these discrete-time predator–prey models take place. In this
paper, we consider a classical discrete-time predator–prey system as follows [1,2]:
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xnþ1 ¼ xn þ rxnð1� xnÞ � axnyn;

ynþ1 ¼ yn þ aynðxn � ynÞ:

�
ð1:1Þ

where xn and yn stand for the densities of prey and predator populations at time n, respectively. The term xn þ rxnð1� xnÞ
represents the rate of the increase of the prey populations in the absence of predator. The term axnyn stands for the rate
of decrease due to predation, where the parameter a is the predation parameter. The term yn þ aynðxn � ynÞ represents the
variation of predator density with respect to the prey population. r and a are positive constants. Although there are many
papers dealing with discrete predator–prey systems [1–10,12,15,13,18], the system (1.1) is neither as same as the existing
related models nor included by them. Notice that if the predator density disappears in the system (1.1), then the system (1.1)
degenerates into the discrete logistic-type model ynþ1 ¼ yn � ay2

n. Celik and Duman [1] studied the local stability of the model
(1.1), and showed the bifurcation phenomena by numerical simulations. These analyses are far from completion. Thus, we
mathematically prove the codimension one (or two) bifurcation of fixed points, including the flip (Neimark–Sacker, abbr.
N–S and 1:2 resonance) bifurcation. At the same time, we get the direction of the N–S bifurcation and explicit approximation
expression of the invariant curve of N–S bifurcation. Finally, controlling bifurcation is done using hybrid control strategy.
Most of these are not given in previous references.

The rest of this paper is organized as follows. In Section 2, existence and stability of fixed points are analyzed. In Section 3,
we give some details about bifurcation analysis of codimension-one and codimension-two. In Section 4, accurate control of
bifurcation phenomena are described. Finally, some conclusions close the paper in Section 5.

2. Existence and stability of fixed points

It is clear that the fixed points of the system (1.1) satisfy the following equations:

xn ¼ xn þ rxnð1� xnÞ � axnyn;

yn ¼ yn þ aynðxn � ynÞ:

�
ð2:1Þ

For a discrete dynamical system on R2, let the Jacobian matrix of this system evaluated at a fixed point ðx; yÞ be Jjðx;yÞ. Assume
that k1 and k2 be two roots of the characteristic equation of the Jacobian matrix Jjðx;yÞ, then we have the following Definition
and two Lemmas [4,10].

Definition 2.1. A fixed point ðx; yÞ is called (i) sink if jk1j < 1 and jk2j < 1, and it is locally asymptotically stable; (ii) source if
jk1j > 1 and jk2j > 1, and it is locally unstable; (iii) saddle if jk1j > 1 and jk2j < 1 or ðjk1j < 1 and jk2j > 1Þ; (iv) non-hyperbolic
if either jk1j ¼ 1 or jk2j ¼ 1.

Lemma 2.1. Let FðkÞ ¼ k2 þ Pkþ Q, suppose that Fð1Þ > 0; k1 and k2 are two roots of FðkÞ ¼ 0, then

(i) jk1j < 1 and jk2j < 1 if and only if Fð�1Þ > 0 and Q < 1;
(ii) jk1j < 1 and jk2j > 1ðor jk1j > 1 and jk2j < 1Þ if and only if Fð�1Þ < 0;

(iii) jk1j > 1 and jk2j > 1 if and only if Fð�1Þ > 0 and Q > 1;
(iv) k1 ¼ �1 and jk2j– 1 if and only if Fð�1Þ ¼ 0 and P – 0;2;
(v) k1 and k2 are complex and jk1j ¼ 1; jk2j ¼ 1 if and only if P2 � 4Q < 0 and Q ¼ 1.

Lemma 2.2. Assume that A is a 2� 2 matrix, then the following results hold.

(i) All eigenvalues k of A satisfy that jkj < 1 if and only if jtrAj � 1 < detA < 1.
(ii) Assume that jtrAj � 1 ¼ detA,

(a) if trA > 0, then the eigenvalues of A are k ¼ 1 and k ¼ detA;
(b) if trA < 0, then the eigenvalues of A are k ¼ �1 and k ¼ �detA.

(iii) Assume that jtrAj � 1 6 detA ¼ 1, then the eigenvalues of A are k ¼ e�ix, where x ¼ cos�1 ðtrA
2 Þ.

The following partial results on fixed points and Jacobian matrix of the system (1.1) can also be found in [1], which is

repeated here for convenience. The system (1.1) has three fixed points as P1 ¼ ð0;0Þ; P2 ¼ ð1;0Þ; P3 ¼ r
aþr ;

r
aþr

� �
. These three

fixed points are called extinction (exclusion, coexistence) fixed points respectively. P3 is the unique positive fixed point
(coexistence fixed point). The Jacobian matrix of the system (1.1) evaluated at ðx; yÞ is as follows:

Jjðx;yÞ ¼
1þ r � 2rx� ay �ax

ay 1þ ax� 2ay

� �
;
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