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a b s t r a c t 

This study will develop a new high-order polynomial surrogate model (HOPSM) to overcome 

routines of expensive computer simulations in engineering. The proposed HOPSM is expected 

to keep advantages of the traditional low-order polynomial models in efficiency, transparency 

and simplicity, while avoid their disadvantage in accuracy. The zeros of Chebyshev polynomi- 

als having the highest allowable order will be utilized as the sampling candidates to improve 

stability and accuracy of the approximation. In the numerical process, a space-filling scheme is 

used to generate the initial set of samples, and then an incremental method based on the max- 

imin principle is established to select more samples from all candidates. At the same time, the 

order of HOPSM is sequentially updated by using an order incremental scheme, to adaptively 

increase the polynomial order along with the increase of the sample size. After the order in- 

crement, the polynomial with the largest adjusted R-square is determined as the final HOPSM. 

Several typical test functions and two engineering applications are used to demonstrate the 

effectiveness of the proposed surrogate modeling method. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

Numerical simulations using accurate models for many real world problems in engineering often become unaffordable, as 

they involve routine evaluations of a large number of cost-prohibitive computations. A surrogate model is an engineering method 

for approximation of practical design problems, to avoid computation extensive simulations. For example, the finite element 

analysis of vehicle crashworthiness will usually take tens of hours to run one simulation, while the whole crashworthiness will 

take hundreds and even thousands of iterations to complete. Furthermore, the simulation model is in general a black box, with 

little or no additional information available for its inner mechanism except for the output it generates [1] . It is hard to explore, 

optimize or gain insight into the system. Hence, the surrogate models have been widely used as inexpensive approximation for 

computationally expensive models [2] . The surrogate model, also termed as meta-model, response surface or emulator, refers to 

any relatively simple relationship between parameters and response often based on limited data [3] . There are two main steps 

involved in the construction of a surrogate model: (1) the sampling or design of experiment (DOE) and (2) metamodeling via 

interpolation or regression algorithms after the sampling. 

There have been several types of surrogate models, including the traditional response surface (low order polynomials) [4] , 

radial basic function (RBF) [5] , Kriging [6,7] , multivariate adaptive regression splines (MARS) [8] , support vector regression (SVR) 
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[9,10] , high dimensional model representation (HDMR) [11,12] , or the combination of these surrogate models [13–15] . For exam- 

ple, Jin et al. [16] studied several surrogate models based on the multiple performance criteria, including accuracy, robustness, 

efficiency, transparency, and conceptual simplicity. Their results showed that the polynomial surrogate models may have ad- 

vantages in efficiency, transparency, and conceptual simplicity over other models. They also noted that the performance of a 

surrogate model is influenced by sampling. Simpson et al. [17] showed that the approximations of Kriging and RBF models for 

high-order nonlinear problems are more accurate, while quadratic polynomials are better for low-order nonlinear functions. At 

the same time, Rijpkema et al. [18] shown that the Kriging model was less stable than the polynomials regression model in some 

cases. Hence, there is no one surrogate model suitable for all problems over different sam pling schemes and different sample 

sizes. Further studies about the comparison of different kinds of surrogate models can be found in references [19–22] . 

As aforementioned, the low-order polynomials have been applied to many engineering problems due to their advantages, 

especially efficiency and transparency. However, due to low accuracy in fitting high-order nonlinear functions, the low-order 

polynomials have difficulty for problems with high nonlinearity. To keep the merits of low-order polynomials while overcome 

their weakness for building surrogate models, the high-order polynomials [23] can be applied to establish surrogate models, 

such as, the Bernstein polynomials [24,25] , Chebyshev polynomials [26,27] and Gegenbauer functions [28] . However, how to 

build surrogate models using high-order polynomials is seldom studied in engineering, mainly because of two reasons: the first 

is the numerical instabilities, e.g. the Runge phenomena, and the second is the large number of samples for estimation of the 

unknown coefficients, particularly for high-dimensional problems [29] . In fact, the first can be avoided by selecting new samples 

to improve stability and accuracy, e.g. the zeros of the first kind Chebyshev polynomials [30–34] . The second can be improved 

by using a suitable expression of polynomials (e.g. the simplex), which may reduce the number of high-order coefficients to be 

estimated in the model. It is noted that the required number of samples is more influenced by the extent of complexity and 

dimension of the function rather than the type of surrogate models. Thus, the required sampling size will increase with the 

increase of complexity and dimension, no matter which type of surrogate models is used. 

The approximation accuracy of a surrogate model is not only determined by the type of surrogate models but also by sampling 

information. The accuracy of a surrogate model will be improved when more data points are sampled. However, it is impossible 

to choose too many sample points due to the computational cost. How to evaluate the unknown information only in terms of a 

limited number of sampling points, to maintain a well trade-off between computational cost and accuracy is an important issue 

for sampling (or DOE). Traditionally, the DOE can be categorized as Factor Design (FD) [35] , Central Composite Design (CCD) [35] , 

Pseudo-Monte Carlo Sampling [36] (PMCS, e.g. the Latin Hypercube sampling [37] , and Orthogonal Sampling [38] ) and Quasi- 

Monte Carlo Sampling (QMCS) [3,36,39] . The FD and CCD, belonging to the classical DOE [3] , are usually employed for laboratory 

experiments where the random errors are assumed to exist, while the modern DOE (PMCS and QMCS) are used in deterministic 

computer simulations without random errors [36] . 

The above sampling methods can be classified as “one-shot” sampling schemes, as the samples are chosen once and fixed 

in the fitting process [1] . These methods can be easily implemented and provide a good coverage of the design space without 

incorporating any prior knowledge of the system. However, the “one-shot” DOE may suffer from its inflexibility to learn the 

special characteristics of the shape of the response surface [40] , and the number of sampling points is easily over or under 

estimated. 

To improve flexibility and efficiency of sampling, the sequential sampling strategy (e.g. the adaptive sampling [41] and incre- 

mental sampling [42] ) has been developed. Sequential sampling analyses the data from samples and surrogate models in order to 

select new samples from the regions that are difficult to approximate, resulting in a more efficient distribution of samples in the 

entire design space compared to the traditional one-shot sampling scheme. That is, in the sequential sampling, a surrogate model 

is first built using an initial set of samples and then sequentially updated by adding new sample points. There are two schemes 

used in the sequential sampling: the first is the global exploration, which scatters samples in regions containing no sampling 

points, and the second is the local exploitation [43] which adds more samples to regions identified to be interesting. The explo- 

ration selects sampling points to fill the entire design space, which is mainly used to build global surrogate models, while the 

exploitation is mainly used in the surrogate model-based optimization. Furthermore, some studies combined exploration with 

exploitation to build global surrogate models, e.g. [1,40,43] . 

The exploration aims to place samples in the entire design space uniformly, which is the same as some modern DOEs. How- 

ever, most QMCS and PMCS are non-incremental sampling methods, as augmenting the number of samples implies a completely 

different sam pling of the parameter space with all new point-locations [44] , which will be too expensive to be used. Romero 

et al. [42] used the Progressive Lattice Sampling (PLS) incremental sampling designs to construct the progressive response sur- 

face. However, the PLS allows only a quantized increment M of samples to be added to an existing PLS level (point set) to achieve 

to a new level. This quantized incremental cost M accelerates quickly with the increase of the PLS level and dimension of the 

parameter space. To make the sequential sampling more flexible, Romero et al. [44] suggested to use the Halton points to build 

the progressive response surface, because Halton sampling does not suffer from the cost-scaling problems that the PLS does. 

Halton [45] is a lower discrepancy (degree of the nonuniformity) sequence method and has a hierarchical structure. The Halton 

points will be used to compare with the sampling scheme proposed in this paper. 

This study will focus on the proposal of a new global surrogate model using high-order polynomials, which can retain the 

merits of traditional low-order polynomial models while improving approximation accuracy. The sampling points will be se- 

quentially and incrementally selected from a candidate set which is comprised of the zeros of first kind Chebyshev polynomials, 

to make the surrogate model more stable. In building the surrogate model, only some of the candidate samples are chosen as the 

required sampling points by using a sequential sampling scheme based on the maximin principle [46] . Since the initial samples, 
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