
Applied Mathematical Modelling 40 (2016) 4 891–4 899 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

Inverse source problem for a time-fractional diffusion 

equation with nonlocal boundary conditions 

Mansur I. Ismailov 

∗, Muhammed Çiçek 

Department of Mathematics, Gebze Technical University, Gebze 41400, Kocaeli, Turkey 

a r t i c l e i n f o 

Article history: 

Received 16 May 2014 

Revised 26 November 2015 

Accepted 7 December 2015 

Available online 18 December 2015 

Keywords: 

Inverse source problem 

Fractional diffusion equation 

Generalized Fourier method 

a b s t r a c t 

In this paper, an inverse problem of determining a time-dependent source term in a one- 

dimensional time-fractional diffusion equation from the energy measurement is studied. 

This problem is obtained from a classical diffusion problem by replacing the time deriva- 

tive with a fractional derivative. The well-posedness of the inverse problem is shown by 

using eigenfunction expansion of a non-self adjoint spectral problem along the generalized 

Fourier method. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

It is known that [1,2] the anomalous diffusion (subdiffusion, superdiffusion, non-Gaussian diffusion) phenomena show 

many different aspects from classical diffusion processes. The time-fractional diffusion equations are commonly used to de- 

scribe for such an anomalous diffusion process. These type of equations are obtained by replacing the standard time deriva- 

tive with a time fractional derivative and can be derived from continuous-time random walk [3] similar to the derivation of 

the classical diffusion equation from Brownian motion assumption. 

The direct problems for fractional diffusion equations such as an initial or boundary value problems have been studied 

extensively in [4–7] and references therein. In contrast of direct problem, the mathematical analysis of inverse problem 

for the fractional diffusion equation is not satisfactorily investigated. The first mathematical results for the inverse problem 

of finding diffusion coefficient for a fractional differential equation are obtained in [8] . In this paper the uniqueness theo- 

rem is proved by using expansion in terms of eigenfunctions of suitable Sturm–Liouville problem along the Gelfand–Levitan 

theory. Similar eigenfunction expansion result along the analytic continuation and Laplace transform is used in determina- 

tion of space-dependent source term in a fractional diffusion equation in [9] . Spectral analysis of suitable Sturm–Liouville 

operator is actively used in other coefficient identification problems for time-fractional diffusion problems, [10,11] . The pa- 

pers [12] and [13] study inverse problems of finding space dependent and time-dependent source terms, respectively, in 

time-fractional diffusion equation by using eigenfunction expansion of the non-self adjoint spectral problem along the gen- 

eralized Fourier method. Some of numerical aspects of inverse source problem in time fractional heat equation are studied 

in [14–17] . 

Consider the time-dependent heat conduction equation 

D 

q 
0+ (u (x, t) − u (x, 0)) = u xx + r(t) f (x, t) , (x, t) ∈ �T , (1) 

∗ Corresponding author. Tel.: +90 2626051641. 

E-mail address: mismailov@gtu.edu.tr , mcicek@gtu.edu.tr , mismailov@gyte.edu.tr , mansur.ismailov@gmail.com (M.I. Ismailov). 

http://dx.doi.org/10.1016/j.apm.2015.12.020 

S0307-904X(15)00829-X/© 2015 Elsevier Inc. All rights reserved. 

http://dx.doi.org/10.1016/j.apm.2015.12.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/apm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2015.12.020&domain=pdf
mailto:mismailov@gtu.edu.tr
mailto:mcicek@gtu.edu.tr
mailto:mismailov@gyte.edu.tr
mailto:mansur.ismailov@gmail.com
http://dx.doi.org/10.1016/j.apm.2015.12.020


4892 M.I. Ismailov, M. Çiçek / Applied Mathematical Modelling 40 (2016) 4891–4899 

with the initial condition 

u (x, 0) = ϕ(x ) , 0 ≤ x ≤ 1 , (2) 

the boundary condition 

u (0 , t) = u (1 , t) , u x (0 , t) + αu (0 , t) = 0 , 0 ≤ t ≤ T , (3) 

where D 

q 
0+ refers to the Riemann–Liouville fractional derivative of order q (0 < q < 1) in the time variable defined by 

D 

q 
0+ u (t) = 

1 

�(1 − q ) 

d 

dt 

∫ t 

0 

u ( τ ) 

( t − τ ) q 
dτ , 

α is real constant, ϕ( x ) is given initial temperature and f ( x, t ) is given source term, �T = { (x, t) : 0 < x < 1 , 0 < t ≤ T } . The 

choice of the term D 

q 
0+ (u (x, . ) − u (x, 0))(t) instead of the usual term D 

q 
0+ (u (x, . )(t) is not only to avoid the singularity at 

zero, but also impose a meaningful initial condition (without fractional integral) [18] . 

If the function r ( t ) is known, the problem of finding u ( x, t ) from (1) –(3) is called the direct problem. However, the 

problem here is that the source function r ( t ) is unknown, which needs to be determined by energy condition ∫ 1 

0 

u (x, t) dx = E(t) , 0 ≤ t ≤ T , (4) 

where E ( t ) are given functions. This problem is called the inverse problem. 

A precedent model for a similar setup in microwave heating process used in various applications in industry, e.g. in 

ceramics and in food processing. The external energy is supplied to a target at a controlled level by the microwave gen- 

erating equipment. However, the dielectric constant of the target material varies in space and time, resulting in spatially 

heterogeneous conversion of electromagnetic energy to heat. This can correspond to source term r ( t ) f ( x, t ) in (1) , where r ( t ) 

is proportional to power of external energy source and f ( x, t ) is local conversion rate of microwave energy. It is needed to 

notice that this spatial variation of absorbing material does not greatly affect the thermal diffusivity, which is due to another 

material at higher concentration. It is also needed to say that the temperature is not so high that temperature dependence 

of dielectric constant is important, as in thermal runaway studies [19] . If u ( x, t ) denotes the concentration of absorbed en- 

ergy in this example, then its integral over all volume of material determining the time dependence absorbed energy. The 

above mentioned inverse problem in the present paper for such a model gives an idea of how total energy content might 

be externally controlled. 

The integral condition (4) arises naturally and can be used as supplementary information in the determination of the 

source term. Such type of condition can model various physical phenomena in context of chemical engineering [20,21] , 

thermoelasticity [22] , heat conduction and diffusion process [23–25] , fluid flow in porous media [26] . In heat conduction 

process, the integral condition (4) is encountered in problems related to particle diffusion in turbulent plasma, and also 

in heat propagation in a thin rod in which the law of variation E ( t ) of the total quantity of heat in the rod is given [23] . 

A problem in the design of periodic contact in thermoelasticity formulated as an inverse problem with prescribed contact 

pattern, which is considered in [22] , is reduced to a heat conduction problem with energy specification. 

The paper [20] considers the model on certain chemicals absorb light at various frequencies. Consequently, the intensity 

of such light on a photoelectric cell gives an electric signal which is proportional to the total amount of chemical present 

in the volume through which the light passes. If u ( x, t ) denotes the concentration of such a chemical which is diffusing in 

a straight tube with x measured in the direction of the axis of the tube, then the electric signal produced by a light beam 

passing through the tube at right angles between x = 0 and x = b is proportional to 
∫ b 

0 u (x, t) dx, 0 < b < 1 which is the 

total mass of the chemical in 0 ≤ x ≤ b at time t . If the boundaries of chemical are supported by the conditions (3) this 

model gives an idea how the limit lim 

b→ 1 −
∫ b 

0 u (x, t) dx of total mass might be externally controlled. 

On the other hand, use of integral condition (4) arises when the data on the boundary cannot be measured directly, but 

only the average value of the solution can be measured along the boundary. More precisely classical boundary conditions 

(Neumann, Dirichlet and Robin type) are not always adequate as it depends on the physical context which data can be 

measure at the boundary of the physical domain. The classical boundary conditions cases, one can have a selection of such 

large noise local space measurement, but which on average produce a less noisy non-local measurement (4) . In the case 

when the equation is valid in boundary x = 0 and x = 1 , the nonlocal condition (4) is reduced to the local condition related 

with u x (1 , t) − u x (0 , t) . Taking the derivative D 

q 
0+ in the condition (4) and in view of Eq. (1) in x = 0 and x = 1 we have ∫ 1 

0 

D 

q 
0+ (u (x, t) − u (x, 0)) dx = D 

q 
0+ [ E(t) − E(0)] 

or 

u x (1 , t) − u x (0 , t) = D 

q 
0+ [ E(t) − E(0)] − r(t ) 

∫ 1 

0 

f (x, t ) dx. 

The boundary conditions related with the difference u x (1 , t) − u x (0 , t) appears in some chemical and biological processes 

[27,28] . 
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