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a b s t r a c t 

The eigenvalues and eigenvectors of a matrix have many applications in engineering and 

science. For example they are important in studying and solving structural problems, in the 

treatment of signal or image processing, in the study of quantum mechanics and in certain 

physical problems. It is therefore essential to analyze methodologies to obtain the eigen- 

vectors and eigenvalues of symmetric and Hermitian matrices. In this paper the authors 

present a methodology for obtaining the eigenvectors and eigenvalues of a symmetric or 

Hermitian matrix using a genetic algorithm. Unlike other methodologies, the process is 

centred in searching the eigenvectors and calculating the eigenvalues afterwards. In the 

search of the eigenvectors a genetic-based algorithm is used. Genetic algorithms are indi- 

cated when the search space is extended, unknown or with an intricate geometry. Also, 

the target vector space can be either real or complex, allowing in this way a wider field of 

application for the proposed method. The algorithm is tested comparing the results with 

those obtained by other methods or with the values previously known. So, seven applica- 

tions are included: a real symmetric matrix corresponding to a vibrating system, a complex 

Hermitian matrix and an important application of the diagonalization problem (Coope ma- 

trix) corresponding to quantum mechanics examples, a physical problem in which data are 

analysed to reduce the number of variables, a comparison with the power method and the 

studies of a degenerate and an ill-conditioned matrix. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

The problem of determining the set of eigenvectors and eigenvalues of a matrix is known as the complete eigenvalue 

problem. This matter is presented in several problems, as solving differential equations, studying the stability and behaviour 

of mechanical structures and determining the allowed states of quantum systems. 

Given a matrix a, A , representing a linear transformation on a vector space V ( K ) defined over a field K , the problem 

results in the determination of the vectors, eigenvectors u, and scalars, eigenvalues ʎ, that solve the equation: 

A · u = λu. (1.1) 

A classic approach is to calculate the eigenvalues as the solution of: 

det ( A − λ · I ) = 0 . (1.2) 
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That is, solving a polynomial equation (characteristic polynomial) P (λ) = 0 . Once the eigenvalues are known, the eigen- 

vector corresponding to each eigenvalue λi is calculated solving the linear system: 

( A − λi · I ) · u 

(i ) = 0 . (1.3) 

Leverrier and Krylov methods can be used to solve the characteristic polynomial [1–4] . However, the calculation of the 

numeric solution has instability problems because of the dependence of the zeroes estimation from the polynomial coeffi- 

cients. Moreover, there are numerical methods for diagonalizing a symmetric matrix (Parlettt,1981, [5] ; Wilkinson,1965 [6] ; 

Cullun, 1985 [7] ). Sometimes not all the eigenvalues are calculated, limiting the effort s to some of them. 

The eigenvalue problem can also be converted in an optimization problem, where an adequate function can be min- 

imized or maximized computing its gradient and hessian, and obtaining the eigenvectors of the matrix. In this case the 

non-deterministic and stochastic methods can be of interest. These methods, that have been applied in physics, economy 

and other fields, can be found in several papers (Kirkpatrick, 1983 [8] ; Van Laarhoven, 1987 [9] ; Goldberg, 1989 [10] ). 

Some authors (Subhajit, 2011 [11] ) have used genetic algorithms to calculate some of the eigenvalues by means of the 

Rayleigh quotient. 

Other methods that don’t need to solve the characteristic polynomial are the power method and its variants, (Demi- 

dovich, 1993 [3] ; Volkov, 1987 [4] ). Let the eigenvalues λ1 , λ2 , .., λn ordered by their magnitudes, 

| λ1 | ≥ | λ2 | ≥ .. ≥ | λn | . (1.4) 

When considering the repeated action of the matrix over an arbitrary vector (expressed using the eigenvectors basis): 

A · y = A ·
(
y 1 · u 1 + y 2 · u 2 + .. + y n · u n 

)
= y 1 · λ · u 1 + y 2 · λ2 · u 2 + .. + y n · λn · u n , (1.5) 

A 

N · y = λN 
1 ·

[ 

y 1 · u 1 + y 2 ·
(

λ2 

λ1 

)N 

· u 2 + .. + y n ·
(

λn 

λ1 

)N 

· u n 

] 

. (1.6) 

The convergence to the first eigenvector depends on the relation( λ2 / λ1 ). There are variations of the method to accelerate 

the convergence velocity: the shifted power method, Aitken’s method, (Demidovich, 1993 [3] ; Volkov, 1987 [4] ), or the Jacobi 

method and others if the matrix is symmetric. When the first eigenvector is calculated, a process of deflation removes it 

from the search space. 

Other possibility that can be used is the QR method that makes orthogonal transforms according to the spectral theorem 

for symmetric matrices (Golub, G.H,1996 [12] ; Endre Süli,2003 [13] ). So, the QR decomposition method factors any matrix 

A as A = QR, where Q is an orthogonal matrix and R is a non-singular upper matrix. This is the base of the QR eigenvalue 

algorithm used for symmetric and Hermitian matrices. A variation of this method, known as Shifted QR makes a previous 

modification of the matrix A, A − αI = QR to speed up the convergence of the algorithm. 

2. Numeric methodology 

In the present paper an implementation of a genetic algorithm is presented for calculating the first eigenvector and 

eigenvalue of a symmetric or Hermitian matrix. To determine the rest of eigenvectors, the matrix is modified by a rotation 

that transforms the first vector of the canonical basis into the calculated eigenvector. The eigenvectors of the transformed 

matrix have the first component equal to zero. 

Once all the eigenvectors have been calculated, the change of basis can be inverted, obtaining the components of the 

eigenvectors in the canonical basis. 

2.1. Search of the first eigenvector 

Given a matrix A, obtaining the eigenvectors is equivalent to solve the equation: 

A · u i = λi · u i . (2.1) 

For simplicity, it can be assumed the normalized eigenvectors, ‖ u i ‖ = 1 . Vectors u i and its images z = A · u i are collinear, 

and so that it meets: 

u 

T 
i · z = u 

T 
i · A · u i = λi · u 

T 
i · u i = λi · ‖ 

u i ‖ 

2 = λi . (2.2) 

Given any vector of module 1 close to the eigenvector x = u i + e , the image can be decomposed into two parts one 

collinear and one perpendicular: 

z = A · x = A · ( u i + e ) = λi · u i + A · e = λi · [ x − e ] + A · e = λi · x + [ A − λi · I ] · e 
= λi · x + ε · x + z ⊥ = ( λi + ε ) · x + z ⊥ . 

So, if the vectors are normalized, ‖ u ‖ = 1 any unitary vector close to the eigenvector, x = u i + e has an image which has 

parallel and orthogonal components: 

z = A · x = ( λi + ε ) · x + z ⊥ . (2.3) 
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