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a b s t r a c t 

This paper presents a mid-frequency dispersion analysis of the triangle-based discontin- 

uous Galerkin method for numerical simulation of seismic wave propagation. The results 

for different orders of basis polynomials are presented and compared with the finite dif- 

ference approximations. It is shown that the dispersion error of the P1 DG is higher than 

that of the second order standard staggered grid scheme if the dispersion error is consid- 

ered with respect to the degrees of freedom per wavelength, and the error of P2 is close 

to that of the fourth order scheme, whereas a further increase in the polynomial order 

makes it possible to simulate seismic waves using as coarse discretization as 2 grid cells 

per wavelength however computational intensity of the algorithm becomes unreasonably 

high. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Modern computational resources and advanced numerical techniques make it possible to simulate wave propagation in 

complex realistic models. On the one hand, such simulations are used in academic application to study peculiarities of wave 

propagation in presence of anisotropy [1–3] ; in presence of attenuation [4–8] ; in presence of small-scale structures [9–13] ; 

in presence of sharp interfaces and surface waves due the discontinuities of the model [14–18] ; in composite materials [19] 

and others. On the other hand, simulation of seismic wave propagation is an essential part of seismic processing algorithms 

such as reverse time migration [20,21] and full waveform inversion [22,23] . 

Note that seismic modeling is typically based on the finite difference technique. This approach combines simplicity be- 

cause regular hexahedral meshes are used; efficiency because explicit schemes are typically utilized; applicability to models 

of almost arbitrary complexity; ease of parallel implementation on the base of domain decomposition, and reliable accuracy 

[24] . Moreover, there is a variety of schemes specified for particular features of the models; for example, simulation of seis- 

mic wave propagation in isotropic media is typically performed by means of the standard staggered grid scheme [25,26] ; in 

the presence of anisotropy Lebedev [3,27] , or a rotated staggered grid [1] scheme is applied, etc. However, presence of sharp 

interfaces in the model may significantly reduce the accuracy of finite difference simulations [28–30] because of low quality 

stair-step approximation of the interface. To overcome this, a variety of approaches were suggested, starting with curvilinear 

a coordinate transform with further use of finite differences [14,15,18] and finishing with advanced numerical techniques 

such as finite elements [31] , including spectral elements [32,33] , finite volumes [34] , discontinuous Galerkin (DG) methods 
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[35–44] and others. If elastic wave propagation is considered with application to engineering and, in particular, to com- 

posite material study, for example, the investigation of band gaps in functionally graded materials and phononic crystals 

finite differences may have one more drawback, i.e., if finite differences are applied to models with smoothly varying co- 

efficients, these coefficients are typically substituted by suitable averaging [29,30,45] which leads to the second order of 

the solution convergence regardless of the formally high order of approximation of elastic wave equation by a scheme. In 

addition, for engineering purposes, a high quality solution almost free from numerical dispersion is required because the 

study of graded material properties is based on the dispersion of the solution and on the frequency dependency of the re- 

flection/transmission coefficients. Therefore, in this area of research, semi-analytical approaches [46,47] and highly accurate 

formulation of finite element techniques [19] are in use. 

In this paper, I focus on the DG mainly in application to seismic modeling problems, where typical discretizations vary 

between 3 points (grid cells) per wavelength to preserve the model resolution and 50 points per wavelength to keep the 

algorithm applicable to problems of realistic size. The DG is preferred for seismic modeling because of several reasons, such 

as relative simplicity of implementation, ease of parallel implementation via domain decomposition, and the possibility of 

constructing “almost” explicit time discretizations. In addition, DG allows hp-adaptivity; i.e., discontinuous locally refined 

meshes [11,13,48] can be used to match the fine structure of the model or, local choice of basis functions can be performed 

to improve accuracy [42] . In particular, the goal of the paper is to perform dispersion analysis of a discontinuous Galerkin 

method applied to velocity-stress (first order) formulation of elastic wave equation to estimate the numerical error due to 

particular discretization and to formulate the criterion on the discretization construction to achieve prescribed accuracy. This 

research has two main peculiarities. First, I focus on the regular triangular meshing of the domain. Regularity of the mesh is 

an essential part of seismic wave simulation, as the models are typically provided on some regular hexahedral (rectangular) 

mesh and only several sharpest interfaces (free-surface, bathymetry) are defined explicitly. This means that the triangulation 

is also regular with only local irregularities in the vicinity of the prescribed interfaces. Second, I am not about to discuss 

the asymptotic behavior of the numerical dispersion because it has been rather extensively discussed in a series of papers 

[49–55] . In addition, I am not going to discuss the high-frequency regimes (discretizations below 3–4 grid cells per wave- 

length) and the behavior of spurious parasitic modes either. These studies are presented in [50,56–59] . So, the objective 

of this research is a mid-frequency dispersion analysis of the DG for an elastic wave equation, which makes it possible to 

choose the grid step for practical applications. To establish a link between obtained results and those reported previously 

on the numerical dispersion of the other methods for seismic modeling, such as finite-differences [3,60,61] , discontinuous 

Galerkin and the spectral elements method for rectangular meshes [44,62,63] I support my results with dispersion analy- 

sis of the commonly used standard staggered grid scheme of the second [25] and the fourth [26] order of approximation. 

To make the comparison consistent, the dispersion curves (dependence of the relative velocity error on the discretization) 

are presented in a standard way; i.e. with respect to the number of grid cells per wavelength, and in terms of degrees of 

freedom per wavelength. 

The paper is organized as follows. In Section 2 , I refer to the DG formulation for the elastic wave equation. Section 3 

contains a detailed description of the dispersion analysis applied to the DG formulation. Next, the numerical study of the 

dispersion for the mid-frequency regimes for DG and finite differences are presented and compared in Section 4 . The results 

are concluded in Section 5 . 

2. Preliminaries 

Consider a hyperbolic system written in divergence-free form in 2D Cartesian coordinates: 

A 1 
∂ � u 

∂t 
−

2 ∑ 

j=1 

B j 

∂ � σ

∂x j 
= 0 , 

A 2 
∂ � σ
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−
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B 

∗
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∂ � u 

∂x j 
= 0 , (1) 

here, matrices A 1 and A 2 are self-adjoint and strictly positive definite, and matrices B 1 and B 2 are independent on the 

coordinates. This representation is valid for the acoustic wave equation [18] , elastic wave equation [3,18] , and Maxwell wave 

equation. In this paper, I will focus on the elastic wave equation where: 

A 1 = 

(
ρ 0 

0 ρ

)
, A 2 = S = 

( 

s 11 s 12 s 13 

s 12 s 22 s 23 

s 13 s 23 s 33 

) 

, 

B 1 = 

(
1 0 0 

0 0 1 

)
, B 2 = 

(
0 0 1 

0 1 0 

)
. 

where ρ is the mass density, S is the compliance matrix; i.e., the inverse of stiffness matrix C . In these notations, � u = 

(u 1 , u 2 ) 
T is the particle velocity vector and 

�
 σ = (σ11 , σ22 , σ12 ) 

T is the stress tensor, written as a vector [64] . Below, only the 
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