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a b s t r a c t 

In this paper, a robust H ∞ 

finite-time stability control approach is proposed for a class of 

nonlinear systems without solving the Hamilton–Jacobi equation and the Riccati equation. 

First, the concept of robust H ∞ 

finite-time stability is proposed and the corresponding the- 

orem is presented. Then, for a class of common dynamic systems such as robotic manip- 

ulators, a robust H ∞ 

finite-time stability controller is designed based on the backstepping 

method, with which the closed-loop system is not only global finite-time stable but also 

has L 2 -gain less than or equal to γ . Finally, some simulations are performed on a robotic 

manipulator with two degrees of freedom. The results indicate that the proposed control 

approach is of high effectiveness. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

Like a robotic manipulator, a kind of highly nonlinear, time-varying and coupled complex dynamic system, there always 

exist uncertainties and external disturbances that may result in control difficulty and performance degradation. In order to 

achieve higher tracking precision and better transient performance of nonlinear dynamic systems such as high-speed robotic 

manipulators, continuous finite-time stability control has been paid more and more attentions to by researchers in recent 

years. Unlike the asymptotic stability, finite-time stability [1] means that system states can be stabilized to equilibrium in 

finite time, and, it may give rise to fast transient and high-precision performances, which are very useful for high-quality 

industrial robot control systems. Until now several finite-time control approaches were proposed, such as a finite-time sta- 

bility approach of homogeneous systems [2,3] , a finite-time Lyapunov stability approach [4–7] , a terminal sliding mode 

approach [8–13] , and a super-twisting sliding-mode approach [14–18] . Feng et al. proposed a non-singular terminal sliding 

mode controller for robot systems [11] . Hong et al. firstly proposed a finite-time controller with state feedback and dy- 

namic output feedback control [19] , and proposed a non-smooth finite-time stabilization design of nonlinear systems with 

parametric and dynamic uncertainties by using the input-to-state stability property and the backstepping technique [20] . 

Su presented a global finite-time tracking controller by replacing linear errors in linear proportional-derivative plus scheme 

with nonsmooth but continuous exponential errors [7] . Zhao et al. designed a robust finite-time stability controller based on 

the backstepping method [6] . Su and Zheng implemented the global finite-time tracking of robotic manipulators by replac- 

ing linear errors with nonlinear exponential-like errors [21] , and addressed the finite-time tracking of robot manipulators 

in the presence of actuator saturation [22] . However, in all these above-mentioned approaches, Although the robustness of 
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nonlinear systems has been considered in some papers, the relationship between the robustness and the control parameters, 

is not discussed. 

Recently, the H ∞ 

control of nonlinear systems has become a hot point due to its excellent control performance. How- 

ever, the H ∞ 

control theory of nonlinear systems, which derives from the L 2 -gain analysis based on the concept of energy 

dissipation, is difficult to apply due to the solvability of the Hamilton–Jacobi equality or inequality. Jongguk and Hyeon 

transformed robot dynamics into an affine form to achieve a more tractable form by a nonlinear matrix inequality and 

obtained the approximate solution [23] . Lu et al. investigated the robust H ∞ 

control of a class of nonlinear systems with 

parameter uncertainty and determined the sufficient conditions for the existence of the dynamic output feedback controller 

[24] . Park and Chung proposed a robust linear PID motion controller to solve the nonlinear L 2 -gain attenuation control prob- 

lem of robotic manipulators [25] . Aguilar et al. developed the nonlinear H ∞ 

controller synthesis for nonsmooth time-varying 

systems via measurement feedback and Riccati equations [26] . Feng et al. proposed the robust stabilization and robust H ∞ 

control for uncertain discrete-time singular systems with state delay based on robust stability analysis [27] . And Feng et 

al. established the sufficient conditions to make singular systems be admissible and strictly (Q, S, R) – α-dissipative, and 

have H ∞ 

performance [28] . However, in most conditions, the closed-loop system is asymptotically stable and the H ∞ 

con- 

trol parameters have to be obtained by solving the Hamilton–Jacobi equality (or inequality) and the Riccati equation, which 

results in high complexity for control of robotic manipulators. However, to the authors’ best knowledge, there are no results 

on robust H ∞ 

finite-time control for a class of uncertain nonlinear systems, which are not only theoretically significant, but 

also important from an application point of view, such as robotics. This motivates the present study. 

Based on the above considerations, in order to guarantee the finite-time convergence and improve the performance of 

a system with uncertainties and disturbances, the robustness of finite-time stability control is studied and the robust H ∞ 

control problem is discussed in this paper. In the investigation, firstly, we define the concept of robust H ∞ 

finite-time sta- 

bility, and give the relative robust H ∞ 

finite-time stability theorem. Next, by taking a class of common nonlinear dynamic 

systems as the research object, a robust H ∞ 

finite-time control approach without solving the Hamilton–Jacobi equality (or 

inequality) and the Riccati equation is proposed based on the backstepping method. Then, for complicated and nonlinear 

robotic manipulators, we design a robust H ∞ 

finite-time stability controller to obtain finite-time convergence and distur- 

bance attenuation in the L 2 -gain sense. Finally, some simulations are carried out on a robotic manipulator with two degrees 

of freedom to verify the developed approach. 

The remainder of this paper is organized as follows: Section 2 briefly reviews the Lyapunov theory for finite-time stability 

of continuous systems and the relative lemmas; Section 3 gives the main results of this paper, including the definition 

of robust H ∞ 

finite-time stability, the robust H ∞ 

finite-time stability theorem and the corresponding controller; Section 

4 discusses a robust H ∞ 

finite-time stability controller for robotic manipulators; and, in Section 5 , some simulations are 

carried out to verify the proposed control approach. 

2. Preliminaries 

The concepts related to finite-time stability control are given in Ref. [1] . Here, we recall the corresponding Lyapunov 

stability theorem for finite-time stability of autonomous systems [29] , which will be used in Section 3 . 

Definition 2.1. Considering a time-invariant nonlinear system in the form of: 

˙ x = f (x ) , f (0) = 0 , x ∈ R 

n , (1) 

where f : ˆ U 0 → R n is continuous in an open neighborhood 

ˆ U 0 of the origin, the equilibrium x = 0 of the system is (locally) 

finite-time stable if: 

(i) It is asymptotically stable in 

ˆ U , an open neighborhood of the origin, with 

ˆ U ⊆ ˆ U 0 ; 

(ii) It is finite-time convergent in 

ˆ U , that is, for any initial condition x 0 ∈ 

ˆ U \{ 0 } , there is a settling time T > 0 such that 

every solution x ( t, x 0 ) of system ( 1 ) is defined with x (t, x 0 ) ∈ 

ˆ U \{ 0 } for t ∈ [0, T ) and satisfies: 

lim 

t→ T 
x (t, x 0 ) = 0 . (2) 

And, if t ≥ T, x ( t, x 0 ) = 0. Moreover, if ˆ U = R n , the origin x = 0 is globally finite-time stable. 

C learly, global asymptotic stability and local finite-time stability imply global finite-time stability. In addition, finite-time 

stability implies the uniqueness in forward time of the solution x = 0. 

Definition 2.2. Considering a nonlinear system in the form of: 

˙ x = f (x, u ) , f (0 , 0) = 0 , x ∈ R 

n , u ∈ R 

m , (3) 

where f : R n × R m → R n is globally defined, the origin of system ( 3 ) is finite-time stable if there is a state feedback control 

law in the form of u = φ(x ) with φ(0) = 0 , such that the origin of the closed-loop system ˙ x = f (x, φ(x )) is in finite-time 

stable equilibrium. 

Lemma 2.3 [2] . Considering nonlinear system ( 1 ). Supposing that there is C 1 function V(x) defined in neighborhood ˆ U ⊂ R n of 

the origin, and real numbers c > 0 and 0 < α < 1, such that 
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