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a b s t r a c t

The NP-hard single machine sequence-dependent group scheduling problem with
minimization of total weighted earliness and tardiness is investigated. An arc-time-indexed
formulation is presented and a Lagrangian-based branch-and-bound algorithm is proposed.
The Lagrangian relaxation of the arc-time-indexed formulation is solved as a shortest path
problem. The results of an extensive computational study demonstrate the efficacy of the
proposed algorithm and establish characteristics of some hard to solve instances.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Two popular strategies for improving the efficiency and cost-effectiveness of a production system are just-in-time (JIT)
scheduling and group scheduling (GS). A JIT strategy improves a production system by reducing in-process inventories. A
GS strategy, which schedules jobs with similar characteristics (e.g., shape or required setups) close together, reduces tooling
changeovers and in-process inventories. When jobs in a group must be processed one after the other without any interrup-
tion by a job from another group, a group technology assumption (GTA) is in place. In environments where a GTA is in place,
there is usually no setup time on the machine between the jobs within a group, but a setup time is incurred when the
machine shifts from processing a job from one group to processing a job of another group. Sometimes the duration of the
setup time depends on the previously processed group on the machine. This situation gives rise to the sequence-dependent
group scheduling problem [1].

We investigate the single machine sequence-dependent group scheduling problem with earliness and tardiness penalties
in which the GTA holds. By introducing earliness and tardiness penalties, we are combining group scheduling and just-in-
time scheduling. The JIT requirements are represented by the earliness and tardiness penalties in the objective function.
Incorporating earliness and tardiness considerations is important, because minimizing earliness and tardiness can

http://dx.doi.org/10.1016/j.apm.2015.01.069
0307-904X/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: t.keshavarz@yazd.ac.ir (T. Keshavarz), martin.savelsbergh@isye.gatech.edu (M. Savelsbergh), nsalmasi@sharif.edu (N. Salmasi).

1 Tel.: +1 404 385 3361; fax: +1 404 894 2301.
2 Tel.: +98 21 66165738; fax: +98 21 66022702.

Applied Mathematical Modelling 39 (2015) 6410–6424

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apm.2015.01.069&domain=pdf
http://dx.doi.org/10.1016/j.apm.2015.01.069
mailto:t.keshavarz@yazd.ac.ir
mailto:martin.savelsbergh@isye.gatech.edu
mailto:nsalmasi@sharif.edu
http://dx.doi.org/10.1016/j.apm.2015.01.069
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


significantly reduce costs. Early production increases finished goods holding cost and costs associated with contamination or
deterioration of (perishable) goods. Tardy production can result in lost sales and loss of reputation. So schedules with
relatively little early and late production can help a firm reduce its total cost of production and maximize its productivity
and on-time delivery.

Single machine scheduling problems often appear as sub-problems in more complex scheduling problems, so focusing on
a single machine scheduling problem is both academically interesting and practically relevant. In addition, results for single
machine problems can provide insights that can be used to solve more complicated scheduling problems more effectively.

In the remainder, we refer to scheduling problems using the typical scheduling classification, see for example Pinedo [2].
Monma and Potts [3] study the single machine group scheduling problem with various objective functions. They show that
the optimal job sequence within groups for 1 fmls; shg

�� ��PwjCj can be found using the weighted shortest processing time first
(WSPT) rule. To determine an optimal group sequence, Ghosh [4] proposes a dynamic programming algorithm for
1 fmls; shg

�� ��PwjCj. Hariri and Potts [5] develop a branch-and-bound algorithm for 1 fmls; sg

�� ��Lmax. Crauwels et al. [6] propose
branch-and-bound algorithms for 1 fmls; sg

�� ��PUj. Bai et al. [7] investigate a single machine group scheduling problem in
which effects of learning and deterioration are considered simultaneously. For a more extensive discussion of group schedul-
ing problems, see Potts and Kovalyov [8].

The single machine scheduling problem with minimization of earliness and tardiness penalties has also received a fair
amount of attention in the literature. Hoogeveen and van de Velde [9] propose a branch-and-bound algorithm for
1jj
P
ðw0jEj þw00j TjÞ. Their algorithm is based on several dominance rules and various lower bounding approaches, including

relaxing the machine capacity and Lagrangian relaxation. The algorithm can solve small instances with up to 20 jobs. Sourd
and Kedad-Sidhoum [10] propose a faster branch-and-bound algorithm for 1jj

P
ðw0jEj þw00j TjÞ that can solve instances with

up to 50 jobs optimally. Kedad-Sidhoum et al. [11] investigate several lower bounding methods for the single and parallel
machine scheduling problem with the earliness and tardiness penalties. Recently, Sourd [12] proposes a more efficient algo-
rithm for 1jj

P
ðw0jEj þw00j TjÞwith either a common due date or general due dates. Tanaka et al. [13] propose a successive sub-

limation dynamic programming method to solve this problem without machine idle time. Their algorithm can optimally
solve instances with 300 jobs and outperforms the previous algorithms in the literature. Sourd [14] investigates the single
machine earliness–tardiness scheduling problem with groups and sequence-dependent setup times and costs. However, the
GTA does not have to hold. He proposes a branch-and-bound algorithm to minimize the sum of the setup costs and earli-
ness–tardiness penalties. Subramanian et al. [15] develop an Iterated Local Search heuristic for 1 sij

�� ��PwjTj. Tanaka and Araki
[16] propose an exact algorithm for 1 sij

�� ��PwjTj. The algorithm is an extension of their previous algorithm for the single
machine scheduling problem without setup times, which is based on the successive sublimation dynamic programming
method. Tanaka [17] investigates the single-machine total weighted earliness–tardiness scheduling problem with machine
idle time and proposes an exact algorithm. Chang et al. [18] develop a hybrid genetic algorithm to solve the single machine
scheduling problem in which a weighted sum of earliness and tardiness costs has to be minimized.

In this paper, we study the single machine sequence-dependent group scheduling problem in which the GTA is enforced
and where we minimize the sum of earliness and tardiness penalties. That is, we consider a single machine and assume that
N groups of jobs, each group g consists of ng jobs, have to be processed and we seek to find a schedule for the groups as well
as for the jobs within a group that minimizes the total weighted earliness and tardiness. The GTA implies that when the
machine start processing one job from a group, it has to process all other jobs in that group as well before processing a
job from another group. When the machine switches from processing the jobs in one group to processing the jobs in another
group, a setup on the machine is required and the setup time required depends on both the group previously processed and
the group to be processed. All jobs are available at the start of the planning horizon.

The problem can be denoted as 1jfmls; shg j
P
ðw0jEj þw00j TjÞ. Since 1jj

P
ðw0jEj þw00j TjÞ is NP-hard [2], it follows that

1jfmls; shg j
P
ðw0jEj þw00j TjÞ is also NP-hard.

We present an arc-time-indexed formulation and a branch-and-bound algorithm. As every branch-and-bound algorithm,
it has three main components: initializing, branching, and bounding. A multi-start local search algorithm is used to generate
a high-quality feasible solution and initialize the search. At each node of the search tree, a bound on the value of an optimal
solution is calculated using a Lagrangian relaxation bound derived from the proposed arc-time-indexed formulation. If the
bound is greater than or equal to the value of the best-known solution, then the node is fathomed. Otherwise, we create two
child nodes using a branching rule that exploits the structure of the solution to the Lagrangian relaxation. Innovative dom-
inance rules are used to strengthen the Lagrangian relaxation bound.

A computational study shows that the proposed algorithm can solve instances with up to 6 groups and up to 25 jobs. The
study also reveals that instances with few groups, large setup times, due dates that are spread out, and due dates that are
hard to achieve (i.e., many jobs are likely to be late) are the most difficult.

The rest of the paper is organized as follows. An arc-time-indexed formulation for 1jfmls; shg j
P
ðw0jEj þw00j TjÞ is proposed

in Section 2. A Lagrangian relaxation method to find the lower bound is presented in Section 3. Several dominance rules for
improving the Lagrangian bound and the subgradient method for maximizing the Lagrangian bound are also discussed in
this section. The branching rule is discussed in Section 4. Algorithms for finding upper bounds are discussed in Section 5.
Computational results are presented in Section 6. Finally, directions for future research are discussed in Section 7.
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