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a b s t r a c t

In this paper, the dynamic response of homogeneous, transversely isotropic, thermoelastic
micro-beam resonators subjected to time-varying transverse loads has been investigated in
the context of generalised theory of thermoelasticity. The micro-beam is modeled based on
Euler–Bernoulli beam theory. The beam is assumed to be at clamped–clamped conditions
at its axial ends. The analytical solution has been obtained by using the Laplace transform
technique in the time domain. The inversion of the transformed solution has been carried
out by using calculus of residues. The analytical expressions for deflection obtained in the
physical domain have been computed numerically for a silicon micro-beam with the help
of MATLAB software. The numerically analysed results for deflection of clamped–clamped
thermoelastic silicon (Si) micro-beam with length, time and frequency ratio due to acting
dynamic loads have been presented graphically. The present model may be used in micro-
electromechanical applications such as relay switches, frequency filters, mass flow sensors,
accelerometers and resonators.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the recent years, the field of microelectromechanical systems (MEMS) has grown rapidly and entered into many
defence and communication applications. The advanced technologies for fabricating a variety of MEMS devices have been
developed to meet the high demand from industries [1]. Microelectromechanical systems (MEMS) have mechanical flexible
components such as micro-cantilevers, micro-bridges and micro-membranes with different geometrical dimensions and
configurations that often carry load [2]. For MEMS designers, it is important to understand the mechanical properties of flex-
ible micro-components in order to predict the amount of deflection from an applied load and vice versa so as to prevent
cracking/fracture, improve performance and to increase the lifetime of MEMS devices [3]. Zener [4] explained the mecha-
nism of thermoelastic damping and derived an analytical solution to relate the energy dissipation and the material proper-
ties of thin beam structures by assuming some mathematical and physical simplifications. Lifshitz and Roukes [5] studied the
thermoelastic damping of a beam with rectangular cross sections and found that after the Debye peaks, the thermoelastic
attenuation will be weakened as the size increases. Sun et al. [6] presented 2-D analysis of frequency shifts by considering
heat conduction along the beam thickness and beam span by taking sinusoidal temperature gradients across the thickness of
the beam. Sharma [7] derived governing equations of flexural vibrations in a transversely isotropic beam in closed form
based on Euler–Bernoulli theory and studied thermoelastic damping (TED) and frequency shift (FS) of vibrations in clamped
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and simply supported beam structures. Guo et al. [8] evaluated the effect of geometry on thermoelastic damping in micro-
beam resonators by using finite element method (FEM).

The dynamic response of clamped–clamped microbeams under mechanical shock has been investigated by Younis et al.
[9]. Pustan and Rymuza [10] studied the mechanical properties of flexible micro-components such as micro-bridges and
micro-cantilevers under mobile load by using finite element method. Yanping and Yilong [11] analysed the static deflections
of micro-cantilever elastic beams under transverse loading by applying the neural network method. Pustan et al. [12] inves-
tigated the mechanical characteristics of micro-cantilevers, micro-bridges and micro-membranes under different loadings.
He et al. [13] explained the non-linear response of clamped–clamped microbeam of the MEMS capacitive switch under
quasi-linear or dynamic mechanical loads. Rhoads et al. [14] investigated the response of resonant micro-beams under elec-
trostatic actuation. Choi and Lovell [15] studied the stretching effects in axially constrained doubly clamped micro-beams for
mechanical and electrostatic loads by using shooting method. Sun et al. [16] investigated the vibration phenomenon during
pulsed laser heating in micro-beams under different boundary conditions. Sedighi and Shirazi [17] predicted the non-linear
vibration behaviour of micro-beams pre-deformed by an electric field by using Parameter Expansion Method (PEM). Jia et al.
[18] studied the forced vibrations of micro-switches under combined electrostatic, intermolecular forces and axial residual
stress. Alasti et al. [19] performed a study on the mechanical behaviour of a functionally gradated cantilever micro-beam
subjected to a thermal moment and nonlinear electrostatic pressure. Sharma and Kaur [20] modeled and analysed the forced
vibrations in micro-scale anisotropic thermoelastic beams due to time harmonic concentrated load.

Lord and Shulman [21] introduced the theory of generalised thermoelasticity (GT) with one relaxation time for isotropic
materials, in which a modified law of heat conduction that includes, both heat flux and its time derivative, replaces the con-
ventional Fourier’s law. The heat equation associated with this theory is of hyperbolic type and thus eliminates the paradox
of infinite speed of propagation inherent in both the uncoupled and coupled theories of thermoelasticity. This theory was
extended by Dhaliwal and Sherief [22] for anisotropic materials. The existence of thermal relaxation time effect (second
sound) was experimentally evidenced by Chester [23], Ackerman and Overton [24], and Ackerman et al. [25]. Achenbach
[26] observed that the thermal relaxation time may be thought of as a measure of the heat conductivity of the material.
Based on this observation, Dhaliwal and Singh [27] stated that the small values of thermal relaxation time correspond to
highly conductive materials in which thermal disturbances travel very fast, and the large values of it refer to highly non-con-
ductive substance to heat conduction processes.

It has been observed that several previous researchers studied the transverse vibrations, thermoelastic damping and fre-
quency shift in micro-beams due to mechanical shocks, laser heating, electrostatic loads and moving loads. In contrast, an
attempt has been made here to study the dynamic response of homogeneous, transversely isotropic, thermoelastic micro-
beam resonators subjected to time-varying mechanical transverse loads. Laplace transformation technique in the time
domain has been used to find the analytical expressions for deflection of the micro-beam resonator. The inversion of the
transformed solution has been performed by using calculus of residues. The maximum deflection of the clamped–clamped
thermoelastic micro-beam with length, time and frequency ratio under dynamic loads has been analysed numerically and
presented graphically for silicon micro-beams. The effect of some related parameters on the deflection of micro-beam res-
onators has also been discussed.

2. Basic equations

We consider a homogenous, transversely isotropic, thermoelastic medium in Cartesian coordinate system Oxyz which is
initially undeformed and at uniform temperature T0. The z-axis is taken normal to the plane of isotropy. The heat conduction
equation along with constitutive relations in the context of Lord and Shulman [21] model of generalised (non-Fourier) ther-
moelasticity which govern displacement vector~uðx; y; z; tÞ ¼ ðu1;u2;u3Þ and temperature change T(x, y, z, t) = T1(x, y, z, t) � TO,
in the absence of body forces and heat sources, are given by [27]:
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where ri j; ei j ði; j ¼ 1; 2; 3Þ are the stress and strain tensors; t is the time and ci j are the elastic parameters. Here

2c66 ¼ c11 � c12; b1 ¼ ðc11 þ c12Þa1 þ c13a3;b3 ¼ 2c13a1 þ c33a3: ð3Þ

The subscripts attached to the parameters and variables denote 1! x; 2! y; 3! z until and unless stated otherwise. The
quantities a1 and a3 are the coefficients of linear thermal expansion along and perpendicular to the plane of isotropy, q is the
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